196 research outputs found

    An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing

    Get PDF
    The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1‐NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1‐ACVR2A and ACVR2A‐FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management

    Molecular testing of sarcomas

    Get PDF
    Connective tissue tumours, particularly sarcomas, are rare and present as a variety of histological subtypes with diverse management protocols and have varied prognoses. Many of these tumours have specific cancer driver genetic alterations that can be leveraged for diagnostic purposes. For practical purposes, these tumours can be categorised as harbouring genetic alterations including chromosomal rearrangements, gene amplifications, single nucleotide substitutions, and complex genetic abnormalities. Herein we discuss different tumour subtypes with their associated genetic abnormalities that may be used in clinical practice, when interpreted in the context of the relevant clinical, histological and radiological information. The benefits of large scale sequencing studies of sarcoma are leading to new insights into sarcoma development and are providing a biological rationale for personalised medicine. Genomic profiling and other “omic” studies will likely play a fundamental part in the development of new diagnostic and predictive biomarkers in the near future

    Isocitrate dehydrogenase 1 mutations (IDH1) and p16/CDKN2A copy number change in conventional chondrosarcomas.

    Get PDF
    To determine whether IDH1 mutations are present in primary and relapsed (local and distal) conventional central chondrosarcomas; and secondly, to assess if loss of p16/CDKN2A is associated with tumour grade progression, 102 tumour samples from 37 patients, including material from presenting and relapse events, were assessed. All wild-type cases for IDH1 R132 substitutions were also tested for IDH2 R172 and R140 alterations. The primary tumour and the most recent relapse sample were tested for p16/CDKN2A by interphase fluorescence in situ hybridisation. An additional 120 central cartilaginous tumours from different patients were also tested for p16/CDKN2A copy number. The study shows that if an IDH1 mutation were detected in a primary central chondrosarcoma, it is always detected at the time of presentation, and the same mutation is detected in local recurrences and metastatic events. We show that p16/CDKN2A copy number variation occurs subsequent to the IDH1 mutation, and confirm that p16/CDKN2A copy number variation occurs in 75 % of high grade central chondrosarcomas, and not in low grade cartilaginous tumours. Finally, p16/CDKN2A copy number variation is seen in both the IDH1 wild-type and mutant cartilaginous central tumours

    Screening of verotoxin-producing Escherichia coli (VETC) O104-2011 from Egyptian market in 2011

    Get PDF
    Escherichia coli strains are important causes of diarrheal disease in the world and remain a major public health problem of animals and human. Sixty seven samples from different kind of food, water, soil and composit were screened for the detection of verotoxin-producing E.coli (VTEC) in the Egyptian markets from different location. Result showed that none of the samples gives positive results for VTEC (O104) (vt1 and vt2) detection. All samples from the Egyptian markets are negative for Vero cyto toxin producing E. coli (O104) with percentage of 100.Keywords: Verotoxin-producing Escherichia coli, Shiga toxins.African Journal of BiotechnologyVol. 12(34), pp. 5321-532

    H3F3A (Histone 3.3) G34W Immunohistochemistry: A Reliable Marker Defining Benign and Malignant Giant Cell Tumor of Bone

    Get PDF
    Giant cell tumor of bone (GCTB) is a locally aggressive subarticular tumor. Having recently reported that H3.3 G34W mutations are characteristic of this tumor type, we have now investigated the sensitivity and specificity of the anti-histone H3.3 G34W rabbit monoclonal antibody in a wide variety of tumors including histologic mimics of GCTB to assess its value as a diagnostic marker. We also determined the incidence of H3.3 G34 mutations in primary malignant bone tumors as assessed by genotype and H3.3 G34W immunostaining. A total of 3163 tumors were tested. Totally, 213/235 GCTB (90.6%) showed nuclear H3.3 p.G34W immunoreactivity. This was not the case for the rare variants, p.G34L, M, and V, which occurred most commonly in the small bones of the hands, patella, and the axial skeleton. If these sites were excluded from the analysis, H3.3 G34W expression was found in 97.8% of GCTB. Malignant bone tumors initially classified as osteosarcomas were the only other lesions (n=11) that showed G34W expression. Notably an additional 2 previously reported osteosarcomas with a p.G34R mutation were not immunoreactive for the antibody. A total of 11/13 of these malignant H3.3-mutant tumors exhibited an osteoclast-rich component: when imaging was available all but one presented at a subarticular site. We propose that subarticular primary malignant bone sarcoma with H3.3 mutations represent true malignant GCTB, even in the absence of a benign GCTB component

    The Chemical Form of Metal Species Released from Corroded Taper Junctions of Hip Implants: Synchrotron Analysis of Patient Tissue

    Get PDF
    The mechanisms of metal release from the articulation at the head cup bearing and the tapered junctions of orthopaedic hip implants are known to differ and the debris generated varies in size, shape and volume. Significantly less metal is lost from the taper junction between Cobalt-Chromium-Molybdenum (CoCrMo) and Titanium (Ti) components (fretting-corrosion dominant mechanism), when compared to the CoCrMo bearing surfaces (wear-corrosion dominant mechanism). Corrosion particles from the taper junction can lead to Adverse Reactions to Metal Debris (ARMD) similar to those seen with CoCrMo bearings. We used synchrotron methods to understand the modes underlying clinically significant tissue reactions to Co, Cr and Ti by analysing viable peri-prosthetic tissue. Cr was present as Cr2O3 in the corroded group in addition to CrPO4 found in the metal-on-metal (MoM) group. Interestingly, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form. The metal species were co-localized in the same micron-scale particles as result of corrosion processes and in one cell type, the phagocytes. This work gives new insights into the degradation products from metal devices as well as guidance for toxicological studies in humans

    Ossifying Fibroma of Non-odontogenic Origin: A Fibro-osseous Lesion in the Craniofacial Skeleton to be (Re-)considered

    Get PDF
    In the cranio-facial skeleton, a heterogeneous group of well characterized fibro-osseous lesions can be distinguished. Whereas fibrous dysplasia can affect any skeletal bone, ossifying fibroma and cemento-osseous dysplasia exclusively develop in the cranio-facial region, with most subtypes restricted to the tooth bearing areas of the jaws. Herein we present a series of 20 fibro-osseous lesions that developed mostly in the frontal bone and in the mandible, presenting as expansile intramedullary tumors with a unique histologic appearance and an indolent clinical course. We provide evidence that these tumors are distinct from the categories included in the WHO classification and are therefore currently unclassifiable. The definition of cemento-ossifying fibroma as an odontogenic neoplasm developing only in close proximity to teeth should be re-considered and incorporate also extragnathic lesions as shown here

    FOS Expression in Osteoid Osteoma and Osteoblastoma: A Valuable Ancillary Diagnostic Tool

    Get PDF
    Osteoblastoma and osteoid osteoma together are the most frequent benign bone-forming tumor, arbitrarily separated by size. In some instances, it can be difficult to differentiate osteoblastoma from osteosarcoma. Following our recent description of FOS gene rearrangement in these tumors, the aim of this study is to evaluate the value of immunohistochemistry in osteoid osteoma, osteoblastoma, and osteosarcoma for diagnostic purposes. A total of 337 cases were tested with antibodies against c-FOS: 84 osteoblastomas, 33 osteoid osteomas, 215 osteosarcomas, and 5 samples of reactive new bone formation. In all, 83% of osteoblastomas and 73% of osteoid osteoma showed significant expression of c-FOS in the osteoblastic tumor cell component. Of the osteosarcomas, 14% showed c-FOS expression, usually focal, and in areas with severe morphologic atypia which were unequivocally malignant: 4% showed more conspicuous expression, but these were negative for FOS gene rearrangement. We conclude that c-FOS immunoreactivity is present in the vast majority of osteoblastoma/osteoid osteoma, whereas its expression is usually focal or patchy, in no more than 14% of osteosarcoma biopsies. Therefore, any bone-forming tumor cases with worrying histologic features would benefit from fluorescence in situ hybridization analysis for FOS gene rearrangement. Our findings highlight the importance of undertaking a thorough assessment of expression patterns of antibodies in the light of morphologic, clinical, and radiologic features

    Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma

    Get PDF
    The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16‐negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post‐transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post‐transcriptional regulatory mechanism that is yet to be defined

    Digital PCR analysis of circulating tumor DNA: a biomarker for chondrosarcoma diagnosis, prognostication, and residual disease detection

    Get PDF
    Conventional chondrosarcoma is the most common primary bone tumor in adults. Prognosis corresponds with tumor grade but remains variable, especially for individuals with grade (G) II disease. There are currently no biomarkers available for monitoring or prognostication of chondrosarcoma. Circulating tumor DNA (ctDNA) has recently emerged as a promising biomarker for a broad range of tumor types. To date, little has been done to study the presence of ctDNA and its potential utility in the management of sarcomas, including chondrosarcoma. In this study, we have assessed ctDNA levels in a cohort of 71 patients, 32 with sarcoma, including 29 individuals with central chondrosarcoma (CS) and 39 with locally aggressive and benign bone and soft tissue tumors, using digital PCR. In patients with CS, ctDNA was detected in pretreatment samples in 14/29 patients, which showed clear correlation with tumor grade as demonstrated by the detection of ctDNA in all patients with GIII and dedifferentiated disease (n = 6) and in 8/17 patients with GII disease, but never associated with GI CS. Notably detection of ctDNA preoperatively in GII disease was associated with a poor outcome. A total of 14 patients with CS had ctDNA levels assessed at multiple time points and in most patients there was a clear reduction following surgical removal. This research lays the foundation for larger studies to assess the utility of ctDNA for chondrosarcoma diagnosis, prognostication, early detection of residual disease and monitoring disease progression
    • 

    corecore