4 research outputs found

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    Gravitational Dynamics of Large Stellar Systems

    Full text link
    Internal dynamical evolution can drive stellar systems into states of high central density. For many star clusters and galactic nuclei, the time scale on which this occurs is significantly less than the age of the universe. As a result, such systems are expected to be sites of frequent interactions among stars, binary systems, and stellar remnants, making them efficient factories for the production of compact binaries, intermediate-mass black holes, and other interesting and eminently observable astrophysical exotica. We describe some elements of the competition among stellar dynamics, stellar evolution, and other mechanisms to control the dynamics of stellar systems, and discuss briefly the techniques by which these systems are modeled and studied. Particular emphasis is placed on pathways leading to massive black holes in present-day globular clusters and other potentially detectable sources of gravitational radiation.Comment: 21 pages, invited talk presented at the 18th International Conference on General Relativity and Gravitation (GRG18), Sydney, July 2007. To appear in Classical and Quantum Gravit

    Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA

    Full text link

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
    corecore