2 research outputs found

    The mechanism of Fe induced bond stability of uranyl( v )

    Get PDF
    The stabilization of uranyl(V) (UO21+) by Fe(II) in natural systems remains an open question in uranium chemistry. Stabilization of UVO21+ by Fe(II) against disproportionation was also demonstrated in molecular complexes. However, the relation between the Fe(II) induced stability and the change of the bonding properties have not been elucidated up to date. We demonstrate that U(V) – oaxial bond covalency decreases upon binding to Fe(II) inducing redirection of electron density from the U(V) – oaxial bond towards the U(V) – equatorial bonds thereby increasing bond covalency. Our results indicate that such increased covalent interaction of U(V) with the equatorial ligands resulting from iron binding lead to higher stability of uranyl(V). For the first time a combination of U M4,5 high energy resolution X-ray absorption near edge structure (HR-XANES) and valence band resonant inelastic X-ray scattering (VB-RIXS) and ab initio multireference CASSCF and DFT based computations were applied to establish the electronic structure of iron-bound uranyl(V)

    Hydration of CH3HgOH and CH3HgCl compared to HgCl2, HgClOH, and Hg(OH)(2): A DFT microsolvation cluster approach

    No full text
    International audienceWe address the aqueous microsolvation of the CH3HgCl and CH3HgOH molecules using a stepwise hydration scheme including up to 33 water molecules and compare our results with the previously studied HgCl2, HgClOH, and Hg(OH)(2) complexes. Optimized geometries and Gibbs free energies were obtained at the B3PW91/aug-RECP(Hg)-6-31G(d,p) level. At least 33 water molecules were required to build the first solvation shell around both methylmercury compounds. Optimized geometries were found having favorable interactions of water molecules with Hg, Cl, and the OH moiety. Born-Oppenheimer molecular dynamics simulations were performed on the largest CH3HgX (X = Cl, OH)-(H2O)(33) clusters at the same level of theory. Born-Oppenheimer molecular dynamics simulations at T = 300 K (ca. 0.62 kcal/mol) revealed the presence of configurations with hydrogenbonded networks that include the OH moiety in CH3HgOH and exclude both the Hg and Cl in CH3HgCl, favoring a clathrate-type structure around the methyl moiety. The comparison to the microsolvated HgClOH, Hg(OH)(2), and HgCl2 molecules showed that, in all cases, the water molecules easily move away from Cl, thus supporting the idea that HgCl2 behaves as a non-polar solute. The theoretical (LIII edge) X-ray absorption near edge structure spectra are obtained and found in good agreement with experimental data, especially for the CH3HgCl species. Published by AIP Publishing
    corecore