2,709 research outputs found

    Gravitational waves from coalescing massive black holes in young dense clusters

    Get PDF
    HST observations reveal that young massive star clusters form in gas-rich environments like the Antenn{\ae} galaxy which will merge in collisional processes to form larger structures. These clusters amalgamate and if some of these clusters harbour a massive black hole in their centres, they can become a strong source of gravitational waves when they coalesce. In order to understand the dynamical processes that are into play in such a scenario, one has to carefully study the evolution of the merger of two of such young massive star clusters and more specifically their respective massive black holes. This will be a promising source of gravitational waves for both, LISA and the proposed Big Bang Observer (BBO), whose first purpose is to search for an inflation-generated gravitational waves background in the frequency range of 101110^{-1}-1 Hz. We used high-resolution direct summation NN-body simulations to study the orbital evolution of two colliding globular clusters with different initial conditions. Even if the final eccentricity is almost negligible when entering the bandwidth, it will suffice to provide us with detailed information about these astrophysical events

    Quantized form factor shift in the presence of free electron laser radiation

    Full text link
    In electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in Free Electron Lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by Ne-like Argon ion and by Xenon atom. We find that the shift brought by the radiation to the form factor is in the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser

    Transformer Oil Passivation and Impact of Corrosive Sulphur

    No full text
    In recent years a significant volume of research has been undertaken in order to understand the recent failures in oil insulated power apparatus due to deposition of copper sulphide on the conductors and in the insulation paper. Dibenzyl Disulfide (DBDS) has been found to be the leading corrosive sulphur compound in the insulation oil [1]. The process of copper sulphide formation and the deposition in the paper is still being investigated, but a recently proposed method seems to be gaining some confidence [1]. This method suggests a two-step process; initially the DBDS and some oil soluble copper complexes are formed. Secondly the copper complexes are absorbed in the paper insulation, where they then decompose into copper sulphide [2]. The most commonly used mitigating technique for corrosive sulphur contaminated oil is passivation, normally using Irgamet 39 or 1, 2, 3-benzotriazole (BTA). The passivator is diluted into the oil to a concentration of around 100ppm, where it then reacts with the copper conductors to form a complex layer around the copper, preventing it from interacting with DBDS compounds and forming copper sulphide. This research project will investigate the electrical properties of HV transformers which have tested positive for corrosive sulphur, and the evolution of those properties as the asset degrades due to sulphur corrosion. Parallel to this the long term properties of transformers with passivated insulation oil will be analysed in order to understand the passivator stability and whether it is necessary to keep adding the passivator to sustain its performance. Condition monitoring techniques under investigation will include dielectric spectroscopy, frequency response analysis, recovery voltage method (aka interfacial polarisation) amongst others. Partial discharge techniques will not be investigated, as the voltage between the coil plates is low and therefore it will not contribute significantly to the overall insulation breakdown, in corrosive oil related faults [3]. The goal of this research is to establish key electrical properties in both passivated and non-passivated power transformers that demonstrate detectable changes as the equipment degrades due to the insulation oil being corrosive

    Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy

    Get PDF
    Observations suggest that star clusters often form in binaries or larger bound groups. Therefore, mergers between two clusters are likely to occur. If these clusters both harbor an intermediate-mass black hole (IMBH; 10^{2-4} Msun) in their center, they can become a strong source of gravitational waves when the black holes merge with each other. In order to understand the dynamical processes that operate in such a scenario, one has to study the evolution of the merger of two such young massive star clusters, and more specifically, their respective IMBHs. We employ the direct-summation Nbody4 numerical tool on special-purpose GRAPE6 hardware to simulate a merger of two stellar clusters each containing 63,000 particles and a central IMBH. This allows us to study accurately the orbital evolution of the colliding clusters and the embedded massive black holes. Within ~7 Myr the clusters have merged and the IMBHs constitute a hard binary. The final coalescence happens in ~10^8 yrs. The implication of our analysis is that intermediate-mass black holes merging as the result of coalescence of young dense clusters could provide a source for the Laser Interferometer Space Antenna (LISA) space-based gravitational wave detector mission. We find that interactions with stars increase the eccentricity of the IMBH binary to about 0.8. Although the binary later circularizes by emission of gravitational waves, the residual eccentricity can be detectable through its influence on the phase of the waves if the last few years of inspiral are observed

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR
    corecore