6 research outputs found

    OVERLAPPED-SPEECH DETECTION WITH APPLICATIONS TO DRIVER ASSESSMENT FOR IN-VEHICLE ACTIVE SAFETY SYSTEMS

    Get PDF
    ABSTRACT In this study we propose a system for overlapped-speech detection. Spectral harmonicity and envelope features are extracted to represent overlapped and single-speaker speech using Gaussian mixture models (GMM). The system is shown to effectively discriminate the single and overlapped speech classes. We further increase the discrimination by proposing a phoneme selection scheme to generate more reliable artificial overlapped data for model training. Evaluations on artificially generated co-channel data show that the novelty in feature selection and phoneme omission results in a relative improvement of 10% in the detection accuracy compared to baseline. As an example application, we evaluate the effectiveness of overlapped-speech detection for vehicular environments and its potential in assessing driver alertness. Results indicate a good correlation between driver performance and the amount and location of overlapped-speech segments

    Information Fusion for Context and Driver Aware Active Vehicle Safety Systems

    No full text
    Although there is currently significant development in active vehicle safety (AVS) systems, the number of accidents, injury severity levels and fatalities has not reduced. In fact, human error, low performance, drowsiness and distraction may account for a majority in all the accident causation. Active safety systems are unaware of the context and driver status, so these systems cannot improve these figures. Therefore, this study proposes a ‘context and driver aware’ (CDA) AVS system structure as a first step in realizing robust, human-centric and intelligent active safety systems. This work develops, evaluates and combines three sub-modules all employing a Gaussian Mixture Model (GMM)/Universal Background Model (UBM) and likelihood maximization learning scheme: biometric driver identification, maneuver recognition, and distraction detection. The resultant combined system contributes in three areas: (1) robust identification: a speaker recognition system is developed in an audio modality to identify the driver in-vehicle conditions requiring robust operation; (2) narrow the available information space for fusion: maneuver recognition system uses estimated driver identification to prune the selection of models and further restrict search space in a novel distraction detection system; (3) response time and performance: the system quickly produces a prediction of driver’s distracted behaviour for possible use in accident prevention/avoidance. Overall system performance of the combined system is evaluated on the UTDrive Corpus, confirming the suitability of the proposed system for critical imminent accident cases with narrow time windows

    Driver behavior analysis and route recognition by Hidden Markov Models

    No full text
    In this investigation, driver behavior signals are modeled using Hidden Markov Models (HMM) in two different and complementary approaches. The first approach considers isolated maneuver recognition with model concatenation to construct a generic route (bottom-to-top), whereas the second approach models the entire route as a dasiaphrasepsila and refines the HMM to discover maneuvers and parses the route using finer discovered maneuvers (top-to-bottom). By applying these two approaches, a hierarchical framework to model driver behavior signals is proposed. It is believed that using the proposed approach, driver identification and distraction detection problems can be addressed in a more systematic and mathematically sound manner. We believe that this framework and the initial results will encourage more investigations into driver behavior signal analysis and related safety systems employing a partitioned sub-module strategy

    Driver adaptive and context aware active safety systems using CAN-bus signals

    No full text
    Increasing stress levels in drivers, along with their ability to multi task with infotainment systems cause the drivers to deviate their attention from the primary task of driving. With the rapid advancements in technology, along with the development of infotainment systems, much emphasis is being given to occupant safety. Modern vehicles are equipped with many sensors and ECUs (Embedded Control Units) and CAN-bus (Controller Area Network) plays a significant role in handling the entire communication between the sensors, ECUs and actuators. Most of the mechanical links are replaced by intelligent processing units (ECU) which take in signals from the sensors and provide measurements for proper functioning of engine and vehicle functionalities along with several active safety systems such as ABS (Anti-lock Brake System) and ESP (Electronic Stability program). Current active safety systems utilize the vehicle dynamics (using signals on CAN-bus) but are unaware of context and driver status, and do not adapt to the changing mental and physical conditions of the driver. The traditional engine and active safety systems use a very small time window (t<;2sec) of the CAN-bus to operate. On the contrary, the implementation of driver adaptive and context aware systems require longer time windows and different methods for analysis. The long-term history and trends in the CAN-bus signals contain important information on driving patterns and driver characteristics. In this paper, a summary of systems that can be built on this type of analysis is presented. The CAN-bus signals are acquired and analyzed to recognize driving sub-tasks, maneuvers and routes. Driver inattention is assessed and an overall system which acquires, analyses and warns the driver in real-time while the driver is driving the car is presented showing that an optimal human-machine cooperative system can be designed to achieve improved overall safety
    corecore