48 research outputs found

    Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars

    Full text link
    We study the impact of internal gravity waves (IGW), meridional circulation, shear turbulence, and stellar contraction on the internal rotation profile and surface velocity evolution of solar metallicity low-mass pre-main sequence stars. We compute a grid of rotating stellar evolution models with masses between 0.6 and 2.0Msun taking these processes into account for the transport of angular momentum, as soon as the radiative core appears and assuming no more disk-locking from that moment on.IGW generation along the PMS is computed taking Reynolds-stress and buoyancy into account in the bulk of the stellar convective envelope and convective core (when present). Redistribution of angular momentum within the radiative layers accounts for damping of prograde and retrograde IGW by thermal diffusivity and viscosity in corotation resonance. Over the whole mass range considered, IGW are found to be efficiently generated by the convective envelope and to slow down the stellar core early on the PMS. In stars more massive than ~ 1.6Msun, IGW produced by the convective core also contribute to angular momentum redistribution close to the ZAMS. Overall, IGW are found to significantly change the internal rotation profile of PMS low-mass stars.Comment: Accepted for publication in A&A (15 pages

    On the Origin of the Bimodal Rotational Velocity Distribution in Stellar Clusters: Rotation on the Pre-Main Sequence

    Get PDF
    We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the VsiniVsini distribution of stars within massive young and intermediate age clusters. Previous models have invoked binary interactions as the origin of this bimodality, although these models are unable to reproduce all of the observational constraints on the problem. Here we suggest that such a bimodal rotational distribution is set up early within a cluster's life, i.e., within the first few Myr. Observations show that the period distribution of low-mass (\la 2 M_\odot) pre-main sequence (PMS) stars is bimodal in many young open clusters and we present a series of models to show that if such a bimodality exists for stars on the PMS that it is expected to manifest as a bimodal rotational velocity (at fixed mass/luminosity) on the main sequence for stars with masses in excess of 1.5\sim1.5~\msun. Such a bimodal period distribution of PMS stars may be caused by whether stars have lost (rapid rotators) or been able to retain (slow rotators) their circumstellar discs throughout their PMS lifetimes. We conclude with a series of predictions for observables based on our model
    corecore