70 research outputs found

    Comparing Effects of Insecticides on Two Green Lacewings Species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae)

    Get PDF
    This study compared lethal and sublethal effects of five insecticides, chlorantraniliprole, cyantraniliprole, spinetoram, novaluron, and lambda-cyhalothrin, on adult and second instars of two green lacewing species, Chrysoperla carnea (Stephens) and Chrysoperla johnsoni Henry, Wells and Pupedis (Neuroptera: Chrysopidae) in the laboratory. Formulated pesticides were tested using concentrations equivalent to the high label rate dissolved in 378.5 liters of water. Novaluron and lambda-cyhalothrin were toxic to larvae and no treated larvae survived to the adult stage. Larva to adult survival was reduced in chlorantraniliprole, cyantraniliprole, and spinetoram treatments. Larva to adult developmental time and sex ratio were not different among the treatments within a species. Chlorantraniliprole, cyantraniliprole, spinetoram, and lambda-cyhalothrin treatments were highly toxic to adults of both species. C. johnsoni females had lower fecundity than C. carnea females in the control. Fecundity of females was similar in the control and novaluron treatment within each species. However, fertility and egg viability were negatively impacted for both species when females were treated with novaluron. C. carnea females had higher fertility and egg viability than C. johnsoni females in the control. Adults of both species had similar longevity in the control and novaluron treatment and adult longevity was not gender specific. All insecticides tested were toxic to C. johnsoni and C. carnea either at the immature or adult stage or both. Results of this study demonstrate a similarity between C. johnsoni and C. carnea for pesticide toxicity irrespective of their varied geographical distributions

    Laboratory Bioassays to Estimate the Lethal and Sublethal Effects of Various Insecticides and Fungicides on Deraeocoris brevis (Hemiptera: Miridae)

    Get PDF
    This laboratory bioassay focused on lethal and sublethal effects of five insecticides (chlorantraniliprole, cyantraniliprole, spinetoram, novaluron, and lambda-cyhalothrin) and two fungicide treatments (sulfur and a mixture of copper hydroxide and mancozeb) on the predatory mired bug, Deraeocoris brevis (Uhler) (Hemiptera: Miridae) using second instars and adult males and females. Formulated pesticides were tested using concentrations that were equivalent to the high label rate (1x) (high rate) and 1/10th of that amount (0.1x) (low rate) dissolved in 378.5 liters of water. Lambda-cyhalothrin was highly toxic to D. brevis nymphs and adults at both rates, whereas both rates of novaluron were highly toxic to nymphs. Cyantraniliprole, chlorantraniliprole, and novaluron were less toxic to adults, and chlorantraniliprole and spinetoram were less toxic to nymphs. Both rates of spinetoram caused significant mortality to adults. Fecundity of adult females was affected negatively by the high rates of either novaluron or spinetoram, whereas the fertility was affected only by the high rate of novaluron. The high rate of spinetoram reduced survival of nymphs. Adults treated with spinetoram had reduced longevity. Cyantraniliprole caused some mortality to nymphs and affected their survival. Both rates of sulfur were toxic to nymphs and affected emergence to adults. The mixture of copper hydroxide and mancozeb was less toxic to D. brevis. Neither adult longevity nor sex ratio was affected by the fungicides. The r values for D. brevis treated with lambda-cyhalothrin, novaluron, spinetoram, and sulfur were low, indicating that these products may have negative impact on population growth

    Reproductive Isolation and Ecological Niche Partition among Larvae of the Morphologically Cryptic Sister Species Chironomus riparius and C. piger

    Get PDF
    Background One of the central issues in ecology is the question what allows sympatric occurrence of closely related species in the same general area? The non-biting midges Chironomus riparius and C. piger, interbreeding in the laboratory, have been shown to coexist frequently despite of their close relatedness, similar ecology and high morphological similarity. Methodology/Principal Findings In order to investigate factors shaping niche partitioning of these cryptic sister species, we explored the actual degree of reproductive isolation in the field. Congruent results from nuclear microsatellite and mitochondrial haplotype analyses indicated complete absence of interspecific gene-flow. Autocorrelation analysis showed a non-random spatial distribution of the two species. Though not dispersal limited at the scale of the study area, the sister species occurred less often than expected at the same site, indicating past or present competition. Correlation and multiple regression analyses suggested the repartition of the available habitat along water chemistry gradients (nitrite, conductivity, CaCO3), ultimately governed by differences in summer precipitation regime. Conclusions We show that these morphologically cryptic sister species partition their niches due to a certain degree of ecological distinctness and total reproductive isolation in the field. The coexistence of these species provides a suitable model system for the investigation of factors shaping the distribution of closely related, cryptic species

    Variable responses of individual species to tropical forest degradation

    Get PDF
    The functional stability of ecosystems depends greatly on interspecific differences in responses to environmental perturbation. However, responses to perturbation are not necessarily invariant among populations of the same species, so intraspecific variation in responses might also contribute. Such inter-population response diversity has recently been shown to occur spatially across species ranges, but we lack estimates of the extent to which individual populations across an entire community might have perturbation responses that vary through time. We assess this using 524 taxa that have been repeatedly surveyed for the effects of tropical forest logging at a focal landscape in Sabah, Malaysia. Just 39 % of taxa – all with non-significant responses to forest degradation – had invariant responses. All other taxa (61 %) showed significantly different responses to the same forest degradation gradient across surveys, with 6 % of taxa responding to forest degradation in opposite directions across multiple surveys. Individual surveys had low power (< 80 %) to determine the correct direction of response to forest degradation for one-fifth of all taxa. Recurrent rounds of logging disturbance increased the prevalence of intra-population response diversity, while uncontrollable environmental variation and/or turnover of intraspecific phenotypes generated variable responses in at least 44 % of taxa. Our results show that the responses of individual species to local environmental perturbations are remarkably flexible, likely providing an unrealised boost to the stability of disturbed habitats such as logged tropical forests
    • …
    corecore