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ECOTOXICOLOGY

Laboratory Bioassays to Estimate the Lethal and Sublethal Effects of
Various Insecticides and Fungicides on Deraeocoris brevis

(Hemiptera: Miridae)

K. G. AMARASEKARE1 AND P. W. SHEARER

Oregon State University, Mid-Columbia Agricultural Research and Extension Center, 3005 Experiment Station Drive,
Hood River, OR 97031

J. Econ. Entomol. 106(2): 776Ð785 (2013); DOI: http://dx.doi.org/10.1603/EC12432

ABSTRACT This laboratory bioassay focused on lethal and sublethal effects of Þve insecticides
(chlorantraniliprole, cyantraniliprole, spinetoram, novaluron, and lambda-cyhalothrin) and two fun-
gicide treatments (sulfur and a mixture of copper hydroxide and mancozeb) on the predatory mired
bug, Deraeocoris brevis (Uhler) (Hemiptera: Miridae) using second instars and adult males and
females. Formulated pesticides were tested using concentrations that were equivalent to the high label
rate (1x) (high rate) and 1/10th of that amount (0.1x) (low rate) dissolved in 378.5 liters of water.
Lambda-cyhalothrin was highly toxic toD. brevis nymphs and adults at both rates, whereas both rates
of novaluron were highly toxic to nymphs. Cyantraniliprole, chlorantraniliprole, and novaluron were
less toxic to adults, and chlorantraniliprole and spinetoram were less toxic to nymphs. Both rates of
spinetoram caused signiÞcant mortality to adults. Fecundity of adult females was affected negatively
by the high rates of either novaluron or spinetoram, whereas the fertility was affected only by the high
rate of novaluron. The high rate of spinetoram reduced survival of nymphs. Adults treated with
spinetoram had reduced longevity. Cyantraniliprole caused some mortality to nymphs and affected
their survival. Both rates of sulfur were toxic to nymphs and affected emergence to adults. The mixture
of copper hydroxide and mancozeb was less toxic to D. brevis. Neither adult longevity nor sex ratio
was affected by the fungicides. The r values forD. brevis treated with lambda-cyhalothrin, novaluron,
spinetoram, and sulfur were low, indicating that these products may have negative impact on
population growth.

KEY WORDS biological control, generalist predator, pear psylla, lethal and sublethal effect, re-
duced-risk insecticide

In the western United States, pest management in
apple (Malus domestica Borkhausen), pear (Pyrus
spp.), and walnut (Juglans spp.) orchards is primarily
focused on a key pest, codling moth [Cydia pomonella
(L.)] (Lepidoptera: Tortricidae) (Beers et al. 1993).
Considered as a worldwide pest, the larva of codling
moth can cause severe internal feeding damage to
apples, pears, and walnuts (Hoyt et al. 1983). Codling
moth damage reduces the market value of the fruit and
makes it unÞt for human consumption. Insecticides
combined with pheromone-based mating disruption
are useful management tactics when used against cod-
ling moth (University of California 1991). The type of
insecticide used to control codling moth can deter-
mine the occurrence of secondary pest outbreaks in
tree fruit orchard (University of California 1991).

In the past, organophosphorus (OP) insecticides
were used commonly for codling moth control (Hoyt
1969, Hoyt and Burts 1974). Following the implemen-
tation of the Food Quality Protection Act of 1996

(FQPA 1996) most were either removed or are in the
process of being removed from use (Agnello et al.
2009). Currently, reduced risk insecticides with novel
modes of action and OP alternatives are used to con-
trol the codling moth (Agnello et al. 2004). However,
little is known about how selective these newer in-
secticide chemistries are to natural enemies. Although
most of these newer reduced-risk insecticides are tar-
get speciÞc with low mammalian toxicity, there is
information that some of these newer insecticides
could affect natural enemies that are important for
regulating secondary insect and mite pests and thus,
integrated pest management (IPM) programs (Brun-
ner et al. 2001, Villanueva and Walgenbach 2005, Kim
et al. 2006, Myers et al. 2006, Villanueva and Walgen-
bach 2006, Agnello et al. 2009, Crampton et al. 2010).
In contrast to neurotoxic OP insecticides, some of the
newer reduced risk insecticides have been shown to
havechronic reproductive rather thanacuteeffectson
natural enemies (Kim et al. 2006). In addition to the
reduced risk insecticides, some of the fungicides used
in pest management may have insecticidal and miti-1 Corresponding author, e-mail: kaushalya2641@yahoo.com.
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cidal properties that affect natural enemies of second-
ary insects and mites (Jepsen et al. 2007). Thus, ad-
ditional information is needed to better understand
the impacts of pesticides on natural enemies, includ-
ing impacts that may affect population growth (Jones
et al. 2009). In this study, we investigated a wide range
of pesticide effects on an important predatory
Hemipteran, Deraeocoris brevis (Uhler) (Hemiptera:
Miridae).

Predatory Hemipterans, including some species in
family Miridae, are important natural enemies in many
agricultural systems and are often effective against
small, soft-bodied arthropods such as aphids, thrips,
and mites (Westigard 1973). The mirid bug D. brevis
(Uhler), a key natural enemy in pear orchards in the
PaciÞc Northwest (Riedl 1991), is widely distributed
in apple and pear orchards in western United States
and Canada (Westigard et al. 1968, Kelton 1982). It is
considered a generalist predator that feeds on small
arthropod pests such as aphids, leafhoppers, psyllids,
and mites (McMullen and Jong 1967). Deraeocoris
brevis is one of the most important predators of pear
psylla, Cacopsylla pyricola Foerster (Hemiptera: Psyl-
lidae) (Westigard et al. 1968). Pesticides used to con-
trol pest insects and mites in tree fruit orchards can
negatively affectD. brevis (Westigard 1973, Kim et al.
2006). These negative effects are either direct: lethal
(acute), or indirect: sublethal (chronic) (Kim et al.
2006). Sublethal effects of pesticide exposure can af-
fect the development, reproduction, and survival of
natural enemies and negatively impact the natural
enemy population growth (Kim et al. 2006). To pre-
dict the total impact of a pesticide on a natural enemy
in the Þeld, both sublethal and acute toxicity effects
need to be quantiÞed. Hence, investigating sublethal
effects should be included in assays to provide a more
accurate assessment of a pesticideÕs impact (Kim et al.
2006). Acute toxicity assays using only topical appli-
cation may not be predictive of impacts of pesticides
in the Þeld (Stark et al. 1995) because beneÞcial or-
ganisms may receive pesticide exposure from multiple
sources, including direct contact and oral exposure
(Longley and Stark 1996). Therefore, estimating sub-
lethal effects through multiple routes of exposure is
necessary to accurately assess insecticides (Banken
and Stark 1998).

This current study was part of a large, multistate
project conducted in Washington, Oregon, and Cali-
fornia, with the goal to improve the sustainability of
apple, pear, and walnut production by enhancing bi-
ological control in western U.S. orchard cropping sys-
tems. The overarching theme was to investigate the
pesticides used againstC. pomonella and their second-
ary impacts on natural enemies found in these three
orchard cropping systems. One aspect of this project
was to develop new technology and information to
allow growers and practitioners to take advantage of
natural enemies in fruit and nut orchards. Other stud-
ies from this large project measured the impact of
various pesticides that are key inputs for deciduous
tree fruit and nut IPM programs. The focus of this
current study is to investigate lethal and sublethal

effects of various pesticides in the laboratory against
D. brevis.

We chose to investigate effects of Þve formulated
insecticides containing the following active ingredi-
ents: cyantraniliprole, chlorantraniliprole, spin-
etoram, novaluron, and lambda-cyhalothrin, and two
fungicide treatments, sulfur and a mixture of copper
hydroxide plus mancozeb on D. brevis nymphs and
adults (males and females) in the laboratory by using
multiple routes of exposure. We then used this infor-
mation to estimate the impact of these pesticides on
the intrinsic rate of population increase (r) for D.
brevis.

Pesticides tested in this study were selected, in part,
with input from the grantÕs Stakeholder Advisory
Panel, and also considering whether these products
were used in one, two, or all three cropping systems
targeted in this project. This allowed other labs asso-
ciated with this grant to test the same pesticides by
using similar procedures on other natural enemies.
Although each cropping system has its uniqueness,
majority of the natural enemies existing in these or-
chards are common for all three systems here in the
western United States. Some of the pesticides selected
(e.g., chlorantraniliprole and spinetoram) are used in
all three crops. Cyantraniliprole is a new unregistered
insecticide with effective control of a cross-spectrum
of important pests, such as caterpillars, whiteßies,
leafminers, thrips, and some aphids, in a wide range of
crops including pome and stone fruits. In addition to
reduced-risk insecticides, we incorporated some OP
replacement insecticides including lambda-cyhalo-
thrin (pears and walnuts) and novaluron (pears and
apples), as these materials are used in some of the
systems to control codling moth, which can impact
natural enemy balance (USEPA 2010, Kim et al. 2011).
The grantÕs Stakeholder Advisory Panel also suggested
that we investigate potential effects from fungicides;
thus, we included the mixture of copper hydroxide
plus mancozeb, primarily used in walnuts for walnut
blight control but not in pears or apples, and sulfur,
which is mainly used in pears and apples but not in
walnuts.

Materials and Methods

D. brevisColony Rearing.A colony of D. breviswas
maintained at 25�C, 50Ð60% RH, and a photoperiod of
16:8 (L: D) h in the laboratory. The initial colony was
started in 2007 fromD. brevis collected from pear and
apple orchards in Hood River, OR. In the summer of
2009, Þeld collectedD. brevis adults were added to the
colony to reduce the risk of inbreeding. Deraeocoris
brevis are predacious, thus, eggs and nymphal stages
were kept separate in ventilated plastic containers
(crispers) (30 by 25 by 9 cm). An area of 20 by 15 cm
was removed from the lids of these crispers and a piece
of insect proof mesh was glued for ventilation. Adults
were maintained in a custom-made wooden sleeve
cage with a glass top (50 by 72 by 54 cm). It had two
18-cm-diameter openings in the front panel covered
with cloth sleeves for insect handling. Nymphs and
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adults were fed eggs of Ephestia kuehniella Zeller
(Lepidoptera: Pyralidae) purchased from a commer-
cial source (BeneÞcial Insectary, Redding, CA). These
eggs were stored in a freezer at �6�C. Ephestia kue-
hniella eggs were sprinkled on a sheet (20.3 by 28 cm)
of blue paper that was soaked in water for 5 min and
then drained of excess water. The blue paper (176
g/m2 [65 lb weight]) (216 by 279 mm) (Fireworx,
Boise Paper Holdings, LLC, Boise, ID) provides better
visibility when assessing the distribution of eggs. Fresh
green beans (organically grown and locally pur-
chased) were provided to supply the moisture needed
for development as well as an oviposition substrate for
adult females. Before use, beans were soaked in a 0.5%
bleach solution for 1 min, rinsed with water, and air-
dried. Adults and immatureD. breviswere transferred
twice weekly to clean crispers containing fresh beans
and E. kuehniella. To maintain the colony, bean pods
with eggs were collected from the adult cage and
placed in clean crispers the eggs hatched. The rearing
method was similar to methods used by Alauzet et al.
1992 and Kim and Riedl 2005.
Insects. Second instars (0Ð1-d-old) and adult male

and female (1Ð2-d-old) D. brevis were used in this
study.NewlyemergedÞrst instarswerecollected from
the crispers with the D. brevis eggs (in bean pods),
provisioned with E. kuehniella eggs and reared as
above until they molted to second instars. Newly
emerged adult male and female D. brevis were col-
lected from crispers containing Þfth instars. Adults
were separated by gender using morphology of the
female reproductive organs in the family Miridae (Da-
vis 1955) and placed in separate crispers provisioned
with E. kuehniella eggs and green beans as above.
Insecticides and Fungicides. The following Þve in-

secticides and two fungicides listed with their maxi-
mum label rates were tested as formulated material:
cyantraniliprole (DuPont Crop Protection, Wilming-
ton, DE) 149.9 g (AI)/ha, chlorantraniliprole (Altacor
35 WG, DuPont Crop Protection, Wilmington, DE)
110.4 g (AI)/ha, spinetoram (Delegate 25 WG, Dow
Agro Sciences LLC, Indianapolis, IN) 122.6 g (AI)/ha,
novaluron (Rimon 0.83 EC, Chemtura AgroSolutions,
Middlebury, CT) 363.4 g (AI)/ha, and lambda-cyh-
alothrin (Warrior II CS, Syngenta LLC Inc., Greens-
boro, NC) 46.6 g (AI)/ha, sulfur (Kumulus DF, Micro
Flo Company LLC., Memphis, TN) 17.9 kg (AI)/ha,
and a mixture of mancozeb (Manzate Pro Stick, Du-
Pont Crop Protection, Wilmington, DE) 1.5 kg (AI)/
ha, and copper hydroxide (Kocide 3000 WG, DuPont
Crop Protection, Wilmington, DE) 2.1 kg (AI)/ha.
Distilled water was used as the control treatment.
Each pesticide was tested using concentrations that
were equivalent to the maximum label rate (1x) and
1/10th of that amount (0.1x) dissolved in 378.5 liters
of water.
Bioassay: Lethal Effects. Custom-made glass arenas

consisting of a glass cylinder (Wheaton Glass Ware-
house, Millville, NJ) standing upright on a glass plate
(Cincinnati Gasket, Cincinnati, OH) (adult arena: 7.5-
cm-diameter by 6-cm-tall by 3.2-mm-thick glass cyl-
inders and 9- by 9-cm and 2.25-mm-thick glass plates,

nymph arena: 4.4-cm-diameter by 6-cm-tall by 2.3-
mm-thick glass cylinders and 6- by 6-cm and 2.25-mm-
thick glass plates) were used in the bioassay. To hold
each plate to the cylinder with binder clips, four alu-
minum strips (1 cm wide by 3 cm long by 1.5 mm thick
and bent to a 90� angle) were glued to the side of the
lower exterior cylinder wall at 90� intervals (corre-
sponding to four corners of the plate) with hot glue.
To provide multiple routes of exposure of treatments,
E. kuehniella eggs (ingestion exposure), beans (inges-
tion exposure), cheese cloth lids (residual exposure),
glass arenas (residual exposure), and insects (contact
exposure) were treated as mentioned below (Fig. 1).
Ephestia kuehniella eggs were used as a food source for
both adults and nymphs of D. brevis and fresh green
beans (organically grown) were provided for mois-
ture.Ephestia kuehniella eggs were drenched in 100 ml
of a treatment solution and air-dried for 30 min. The
green beans were treated by dipping them in 50 ml of
a treatment for 5 s, suspended from a horizontal wire
with a small binder clip, and then air-dried. Individual
pieces of cheese cloth (10 by 10 cm and 15 by 15 cm)
(no. 90 [44 by 36], http://www.onlinefabricstore.net)
were used as lids to cover the small and large arenas,
respectively. The cheese-cloth lids were treated by
dipping them in 50 ml of a treatment solution and then
air-dried.

The glass arenas and insects were treated with a
Potter spray tower (Burkard ScientiÞc, Uxbridge,
United Kingdom) (103 kPa, intermediate nozzle).
Glass plates and cylinders were separately sprayed
with 2 ml of solution, then removed from the spray
tower after a 5-sec settling period. The treated plates
and cylinders were air-dried for 30 min and then
assembled and held together with four small (1.9-cm)
binder clips at the points where four aluminum strips
were glued. Test insects were treated in a 9-cm-diam-
eter glass petri dish as a group of four nymphs per
replicate or a single pair of adult male and female D.
brevis per replicate, respectively. Treated insects then
were transferred with a soft brush to the assembled
glass arenas and then covered with a treated cheese
cloth lids (Fig. 1). Adult and immatureD. breviswere
provided with treated E. kuehniella eggs (�0.2Ð0.3 g)
and fresh green beans (one bean pod per replicate).
All arenas were placed in an environmental growth

Fig. 1. Multiple routes of exposure bioassay arena forD.
brevis. (Online Þgure in color.)
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chamber (Percival I-36LLVLC8, Percival ScientiÞc
Inc., Perry, IA) at 23�C, 60% RH, and a photoperiod of
16:8 (L:D) h. Arenas containing adult or immatureD.
breviswere checked daily to assess mortality until 10 d
after treatment (DAT). Untreated E. kuehniella eggs
and fresh green beans were provided to all surviving
insects at 72 h after treatment; afterwards, fresh beans
and E. kuehniella eggs were provided to all surviving
insects three times a week. The insecticide and fun-
gicide experiments (insecticides: adults: n � 10 [5
replicates], nymphs: n � 20 [5 replicates] and fungi-
cides: adults: n � 30 [15 replicates], nymphs: n � 60
[15 replicates]) were conducted independently. The
insecticide experiment was repeated twice using the
same experimental procedures for a total of 15 repli-
cates.
Bioassay Sublethal Effects: Nymph to Adult Devel-
opmental Time, Survival, and Sex Ratio. Treated
nymphs from the lethal bioassay were reared until
they molted to adults and their developmental time
and nymph to adult survival (adult emergence) were
determined. All surviving nymphs were provided with
fresh beans and E. kuehniella eggs three times a week.
The gender of the emerged adults was determined
using the methods described above (Davis 1955).
Adult sex ratio was calculated as the percentage of
females ([females/(males � females)] * 100).
Bioassay Sublethal Effects: Adult Longevity, Fecun-
dity, Fertility, and Egg Viability. Treated adults were
reared until they died. Fresh beans and E. kuehniella
eggs were provided to all surviving adults three times
a week. Green beans from the adult arenas were col-
lected every other day to measure the number of eggs
each female laid and egg hatch for a period of 20 d
(�30% of adult life plus 8 d of preoviposition period).
Collected bean pods (egg beans) were checked under
a microscope to count the number of eggs laid and
then placed individually in a glass petri dish (9 cm
diameter) and covered with the lid. A small amount
(�0.2Ð0.3 g) of E. kuehniella eggs was added to each
petri dish as food for emerging nymphs. All petri
dishes were placed in an environmental growth cham-
ber set to the conditions above and monitored daily for
egg hatch and number of viable nymphs that emerged.

Bioassay Sublethal Effects: Intrinsic Rate of Popu-
lation Increase (r).An age structured matrix model of
D. brevis was developed for each insecticide and fun-
gicide by using life-history elements of survivorship,
developmental rate, fecundity, and sex ratio to calcu-
late the intrinsic rate of population increase (r). We
used life history stages of eggs (F1 generation), Þrst to
second instar (F1 generation), third to Þfth instar
(treated nymphs), preovipositing females, and adult
females (treated adults) to obtain the developmental
time and survival of each life stage. Daily fecundity
was obtained from eggs collected from adult treated
females. Sex ratio was calculated from adults that
emerged from F1 generation.

Newly emerged nymphs from eggs oviposited in
beans (eggs from treated adult females) (n� 25, Þve
replicates per treatment) were collected to study the
F1 generation. Five of the nymphs collected from each
replicate were placed in a 9-cm-diameter petri dish
with a fresh green bean andE. kuehniellaeggs. All petri
dishes were placed in an environmental growth cham-
ber and their development and survival were moni-
tored daily until the adult emergence. Gender of the
emerged adults was determined.

Pop Tools, an add-in for 32 bit PC versions of Mi-
crosoft Excel (version 97 and up) was used for the
matrix model development and analyses (Hood 2011).
Statistical Analyses. The experimental design used

for both nymph and adult insecticide experiments was
randomized complete block design. A two-way anal-
ysis of variance (ANOVA) was performed (PROC
MIXED) (SAS Institute 1999) to test for interactions
between experiments (blocks) and treatments for mor-
tality, developmental time, survival, sex ratio, fecundity,
fertility, and egg viability. A three-way ANOVA was
performed for adult longevity to test for interactions
among experiments (blocks), treatments, and gender.
Block means were used in mean comparisons.

A completely randomized experimental design was
used for both nymph and adult fungicide experiments. A
one-way ANOVA was performed (PROC MIXED) for
mortality, developmental time, survival, sex ratio, fecun-
dity, fertility, egg viability, and a two-way ANOVA was
performed for adult longevity and gender.

Table 1. Mortality (%) (mean � SEM) of Deraeocoris brevis treated as second instars with different rates of insecticides or water
(control) 1, 2, and 10 d after treatment (DAT)

Treatment Max label rate/ha Ratea Mg AI/liter
Mortality (%) � SEMb

1 DAT 2 DAT 10 DAT

Control Ð Ð Ð 3.3 � 3.3e 3.3 � 3.3e 3.3 � 3.3e
Chlorantraniliprole 315.2 g 0.1x 11.8 6.7 � 3.3de 6.7 � 3.3e 13.3 � 8.8cde

1.0x 117.9 0.0 � 0.0e 3.3 � 3.3e 3.3 � 3.3e
Cyantraniliprole 1.5 liters 0.1x 16.0 3.3 � 3.3e 3.3 � 3.3e 10.0 � 0.0de

1.0x 160.2 3.3 � 3.3e 6.7 � 3.3e 23.3 � 8.8bcd
Novaluron 3.7 liters 0.1x 38.9 23.3 � 23.3cd 56.7 � 8.8d 100.0 � 0.0a

1.0x 388.5 33.3 � 28.5bc 86.7 � 8.8b 100.0 � 0.0a
Spinetoram 490.4 g 0.1x 13.1 0.0 � 0.0e 0.0 � 0.0e 6.7 � 6.7e

1.0x 131.1 3.3 � 3.3e 3.3 � 3.3e 10.0 � 5.8de
Lambda-cyhalothrin 187.1 ml 0.1x 5.0 36.7 � 21.9bc 70.0 � 5.8cd 100.0 � 0.0a

1.0x 49.9 60.0 � 26.5a 100.0 � 0.0a 100.0 � 0.0a

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
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Means were compared at P� 0.05 signiÞcance level
for all experiments (least square means [LSMEANS])
(SAS Institute 1999). Proportion of mortality, survival,
and sex ratio were arcsine-square root transformed
before ANOVA to stabilize variances (Zar 1984).
Insect Identification and Species Verification. In-

sect identiÞcation and species veriÞcation (Lot no.
1201881) of D. brevis was provided by T. J. Henry
(Miridae) the Systematic Entomology Laboratory,
Agricultural Research Service, U.S. Department of
Agriculture, Baltimore, MD.
Voucher Specimens. Voucher specimens of D. bre-
viswere deposited in the entomology insect collection
at Oregon State University, Mid-Columbia Agricul-
tural Development and Extension Center, Hood
River, OR 97031.

Results

Bioassay-Lethal Effects: Insecticides. Nymphs
treated with either rate of novaluron or lambda-cyh-
alothrin had signiÞcant mortality at 1, 2, and 10 DAT,
respectively (1 DAT: F� 2.51; df � 10, 20; P� 0.0380;
2 DAT: F� 47.40; df � 10, 20; P� 0.0001; 10 DAT: F�
276.83; df � 10, 20; P� 0.0001) (Table 1) (Fig. 2). At

1 and 2 DAT, mortality of immature D. brevis treated
with either rate of chlorantraniliprole, cyantranilip-
role, or spinetoram were not statistically different
from mortality observed in the control. Approximately
23% mortality was observed for nymphs treated with
the high rate of cyantraniliprole at 10 DAT, although
the mortality of nymphs treated with chlorantranilip-
role or spinetoram was similar to the control mortality.
At 10 DAT, both rates of novaluron and lambda-cyh-
alothrin caused 100% mortality of nymphs.

Adults treated with the high rate of either lambda-
cyhalothrin or novaluron had greater mortality than in-
sects in the control and other treatments at 1 DAT (F�
68.13; df � 10, 20; P � 0.0001) (Table 2). Mortality
increased to 50 and 100% in the lambda-cyhalothrin
treatments by two DAT (F � 27.28; df � 10, 20; P �
0.0001). Both rates of spinetoram caused 46.7% mortality
to adult by 10 DAT, whereas insects treated with chlo-
rantraniliprole, cyantraniliprole,ornovaluronsurvivedat
levels that were not statistically different from the control
insects (F� 22.03; df � 10, 20; P� 0.0001) (Fig. 2).
Bioassay-Lethal Effects: Fungicides. Nymphs

treated with the high rate of sulfur had signiÞcantly
more mortality (10%) at 1 DAT than the control in-
sects (F � 1.79; df � 4, 56; P � 0.0430) (Table 3). At
2 and 10 DAT, signiÞcantly higher mortality was ob-
served for insects treated with either rate of sulfur
(two DAT: F � 3.26; df � 4, 56; P � 0.0180; 10 DAT:
F� 5.84; df � 4, 54; P� 0.0006) with �50% mortality
at 10 DAT. The mortality caused by either rate of the
mixture of copper hydroxide and mancozeb was not
statistically signiÞcant at 1, 2, and 10 DAT.

Neither rate of the copper hydroxide and mancozeb
mixture caused any statistically signiÞcant mortality to
adults by 10 DAT (Table 4). SigniÞcant mortality was
observed for adults treated with the high sulfur rate at
two DAT compared with the control insects (F� 1.64;
df � 4, 56; P � 0.0438).
Bioassay-Sublethal Effects: Nymph to Adult Devel-
opmentalTime,Survival, andSexRatio—Insecticides.
None of the nymphs treated with novaluron or lamb-
da-cyhalothrin survived to adults, whereas 90% sur-
vived in the control (F� 18.97; df � 10, 20;P� 0.0001)

Fig. 2. Effects of insecticides on D. brevis at 10 DAT in
relation to percentage nymph and adult mortality at high
label rate.

Table 2. Mortality (%) (mean � SEM) of adult Deraeocoris brevis treated with different rates of insecticides or water (control) 1, 2,
and 10 d after treatment (DAT)

Treatment Max. label rate/ha Ratea Mg AI/liter
Mortality (%) � SEMb

1 DAT 2 DAT 10 DAT

Control Ð Ð Ð 0.0 � 0.0d 0.0 � 0.0f 13.3 � 8.9de
Chlorantraniliprole 315.2 g 0.1x 11.8 0.0 � 0.0d 0.0 � 0.0f 20.0 � 11.5cde

1.0x 117.9 0.0 � 0.0d 0.0 � 0.0f 3.3 � 3.3e
Cyantraniliprole 1.5 liters 0.1x 16.0 0.0 � 0.0d 0.0 � 0.0f 13.3 � 8.9de

1.0x 160.2 0.0 � 0.0d 3.3 � 3.3ef 10.0 � 10.0de
Novaluron 3.7 liters 0.1x 38.9 3.3 � 3.3cd 3.3 � 3.3ef 23.3 � 3.3cde

1.0x 388.5 6.7 � 3.3bc 6.7 � 3.3def 20.0 � 10.0cde
Spinetoram 490.4 g 0.1x 13.1 3.3 � 3.3cd 6.7 � 3.3def 46.7 � 3.3b

1.0x 131.1 3.3 � 3.3cd 10.0 � 5.8cde 46.7 � 14.5b
Lambda-cyhalothrin 187.1 ml 0.1x 5.0 3.3 � 3.3cd 50.0 � 23.1b 86.7 � 8.8a

1.0x 49.9 66.7 � 3.3a 100.0 � 0.0a 100.0 � 0.0a

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
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(Table 5). Fewer nymphs treated with either the high
rate of cyantraniliprole or spinetoram survived (80
and 73.3%, respectively) when compared with nymph
survival in the control (90%) (F � 18.97; df � 10, 20;
P � 0.0001). There was no difference in nymph de-
velopmental time among treatments. Nymph devel-
opmental time ranged between 13.5 and 14.5 d.
Nymphs treated with the high rate of cyantraniliprole
had signiÞcantly higher female biased sex ratio
(73.3%) as emerged adults (F � 1.23; df � 6, 12; P �
0.0376).
Bioassay-Sublethal Effects: Nymph to Adult Devel-
opmental Time, Survival, and Sex Ratio—Fungicides.
Fewer nymphs survived to adult when treated with
either rate of sulfur (�57%) (F� 3.15; df � 4, 54; P�
0.0213) compared with levels observed in the control
(Table 6). These nymphs also had a longer nymph to
adult developmental time (�17 d) (F � 4.94; df � 4,
43; P � 0.0023). There was no difference in the sex
ratio of emerged adults from treated nymphs. The sex
ratio ranged from 36.4 to 53.3%.
Bioassay-SublethalEffects:AdultLongevity, Fecun-
dity, and Fertility and Egg Viability—Insecticides.
Adult longevity was signiÞcantly shorter for males
treated with the low rate of chlorantraniliprole, or
either rate of spinetoram or lambda-cyhalothrin, when
compared with other treatments (F � 10.73; df � 10,
42;P� 0.0001) (Table 7). The females treated with the
low rate of chlorantraniliprole or cyantraniliprole, ei-
ther rate of novaluron, spinetoram, or lambda-cyhalo-
thrin had shorter longevity compared with the lon-
gevity of the females in the control (36.9 d) (F� 10.73;
df � 10, 42; P � 0.0001).

Females treated with the high rate of novaluron or
spinetoram had signiÞcantly lower fecundity com-
pared with the fecundity of the females in the control
(F � 3.97; df � 8, 16; P � 0.0091) (Table 7). Females
treated with the high rate of novaluron produced
signiÞcantly lower numbers of viable eggs (F � 2.53;
df � 8, 16;P� 0.0453). The lowest level of egg viability
(as a percentage of viable eggs to total number of eggs
produced) was observed for the eggs laid by females
treated with the high rate of novaluron (F� 1.58; df �
8, 16; P � 0.0283).
Bioassay-SublethalEffects:AdultLongevity, Fecun-
dity, and Fertility and Egg Viability—Fungicides.
Longevity of adult males and females was not affected
by the fungicide (F � 0.58; df � 4, 90; P � 0.6743)
treatments (Table 8), nor were there differences be-
tween sexes (F � 0.58; df � 4, 90; P � 0.6743). None
of the fungicide treatments caused any negative im-
pact on the fecundity of females. Eggs laid by females
treated with either rate of sulfur had signiÞcantly
lower fertility (approximately nine eggs hatched)
compared with the fertility of the eggs in the control
(�45 eggs hatched) (F� 1.70; df � 4, 33; P� 0.0445).
Eggs laid by females treated with the high rate of sulfur
had signiÞcantly lower egg viability compared with
eggs laid by females in the control treatment (F� 1.29;
df � 4, 19; P � 0.0387).
Bioassay Sublethal Effects: Intrinsic Rate of Popu-
lation Increase (r)—Insecticides. The intrinsic rates
of population increase (r) obtained from the stage
structured matrix models were reduced relative to the
control for lambda-cyhalothrin (�0.202), novaluron
(�0.158), and spinetoram (�0.003). The r values for

Table 3. Mortality (%) (mean� SEM) of Deraeocoris brevis treated as second instars with different rates of fungicides or water (control)
1, 2, and 10 d after treatment (DAT)

Treatment Max. label rate/ha Ratea Mg AI/liter
Mortality (%) � SEMb

1 DAT 2 DAT 10 DAT

Control Ð Ð Ð 0.0 � 0.0c 0.0 � 0.0c 0.0 � 0.0c
Copper hydroxide � mancozeb 4.5 kg, 2.0 kg 0.1x 221.0 0.0 � 0.0c 0.0 � 0.0c 10.7 � 5.7bc

161.8
1.0x 2209.9 6.7 � 4.5bc 13.5 � 5.9bc 20.0 � 9.5bc

1617.8
Sulfur 22.4kg 0.1x 1917.4 3.3 � 3.3c 16.7 � 6.3ab 50.0 � 9.1a

1.0x 19174.4 10.0 � 5.3ab 16.7 � 6.3ab 46.7 � 10.3a

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS Test).

Table 4. Mortality (%) (mean � SEM) of adult Deraeocoris brevis treated with different rates of fungicides or water (control) 1, 2
and 10 d after treatment (DAT)

Treatment Max. label rate/ha Ratea Mg AI/liter
Mortality (%) � SEMb

1 DAT 2 DAT 10 DAT

Control Ð Ð Ð 0.0 � 0.0a 0.0 � 0.0c 7.1 � 4.9a
Copper hydroxide � mancozeb 4.5 kg, 2.0 kg 0.1x 221.0 0.0 � 0.0a 0.0 � 0.0c 13.3 � 7.7a

161. 8
1.0x 2209.9 3.3 � 3.3a 3.3 � 3.3bc 20.0 � 8.2a

1617.8
Sulfur 22.4 kg 0.1x 1917.4 0.0 � 0.0a 3.3 � 3.3bc 16.7 � 7.9a

1.0x 19174.4 6.7 � 4.5a 10.0 � 5.3ab 20.0 � 6.5a

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
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chlorantraniliprole and cyantraniliprole were 0.088
and 0.091, respectively. The r value for theD. brevis in
the control treatment was 0.085.
Bioassay Sublethal Effects: Intrinsic Rate of Popu-
lation Increase (r)—Fungicides.The intrinsic rates of
population increase (r) for the D. brevis treated with
the mixture of copper hydroxide and mancozeb or
sulfur were 0.071 and 0.029, respectively. The r value
for the D. brevis in the control treatment was 0.094.

Discussion

In this study, we discovered negative effects of some
of the reduced risk and OP-replacement insecticides
and fungicides we tested on D. brevis. Effects were
either lethal (acute) or sublethal and they hindered
the development, survival, and reproduction of D.
brevis, and the impact of some of the pesticides tested
was gradual.

Despite the singular focus of most toxicological
studies on mortality and survival estimates, there is an
increasing awareness of more subtle toxicant effects
that warrants closer attention (Stark and Banks 2003).
Sublethal effects of pesticides can be as important as
direct toxic effects when measuring pesticide effects
on natural enemies. Decreases in fecundity, fertility,
developmental time, longevity, and sex ratio are all

considered sublethal effects of pesticides (Theiling
and Croft 1989, Starks and Banks 2003). Sublethal
effects need to be included and quantiÞed to provide
a more accurate picture of the total impact of a pes-
ticide on a natural enemy. In contrast to acute toxicity,
which is expressed in terms of mortality of a speciÞc
stage, the impact of sublethal effects on a natural
enemy population is more difÞcult to assess in the
Þeld.

Insecticides with little or no acute toxicity may have
sublethal effects, including effects on reproduction
and development that can negatively impact popula-
tion growth (Stark and Banks 2003). Our results show
that fecundity and longevity of D. brevis was affected
by some of the pesticides we used in this study. We
found thatD. brevis treated with lambda-cyhalothrin,
novaluron, or spinetoram had a negative intrinsic rate
of population increase (r) which according to Starks
and Banks (2003) is an indication that the population
would decline exponentially and head toward extinc-
tion. Recent measurements have indicated that toxi-
cological analyses based on population growth rate
provide a more accurate assessment of a pesticideÕs
impacts because the measure of population growth
rate combines both lethal and sublethal effects (Stark
and Banks 2003). Our results support that assessment.

Table 5. Nymph to adult survival (%), nymph to adult developmental time (d) and adult sex ratio (adults emerged from treated nymphs)
(%) (mean � SEM) of Deraeocoris brevis treated as second instar with different rates of insecticides or water (control)

Treatment
Max. label

rate/ha
Ratea Mg AI/liter

Survival (%)
nymph to adultb,c

Developmental time (d)
nymph to adultb,c

Adult sex ratio
(%)b,d,c

Control Ð Ð Ð 90.0 � 5.8abc (60) 13.8 � 0.9a (56) 42.5 � 3.8d (54)
Chlorantraniliprole 315.2 g 0.1x 11.8 76.7 � 6.7cde (60) 13.5 � 0.3a (46) 50.0 � 0.0cd (46)

1.0x 117.9 86.7 � 8.8abcd (60) 13.7 � 0.5a (52) 63.3 � 6.7cd (52)
Cyantraniliprole 1.5 liters 0.1x 16.0 80.0 � 5.8bcde (60) 13.9 � 0.8a (50) 56.7 � 12.0cd (48)

1.0x 160.2 66.7 � 8.8e (56) 13.7 � 0.8a (34) 73.3 � 14.5abc (36)
Novaluron 3.7 liters 0.1x 38.9 0.0 � 0.0f (60) Ð Ð

1.0x 388.5 0.0 � 0.0f (60) Ð Ð
Spinetoram 490.4 g 0.1x 13.1 80.0 � 5.8bcde (60) 14.1 � 0.9a (50) 70.0 � 5.8bcd (48)

1.0x 131.1 73.3 � 6.7de (60) 14.5 � 0.8a (52) 46.7 � 16.7cd (44)
Lambda-cyhalothrin 187.1 ml 0.1x 5.0 0.0 � 0.0f (60) Ð Ð

1.0x 49.9 0.0 � 0.0f (60) Ð Ð

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
c Total number of nymphs used in each treatment is stated in the parenthesis.
d Adult sex ratio calculated as the percentage of females � (�females/(males � females)	 * 100).

Table 6. Nymph to adult survival (%), nymph to adult developmental time (d) and adult sex ratio (adults emerged from treated nymphs)
(%) (mean � SEM) of Deraeocoris brevis treated as second instar with different rates of fungicides or water (control)

Treatment
Max. label

rate/ha
Ratea Mg AI/liter

Survival (%)
nymph to adultb,c

Developmental time (d)
nymph to adultb,c

Adult sex ratio
(%)b,d,c

Control Ð Ð Ð 90.0 � 5.3ab (52) 15.7 � 0.2d (46) 53.3 � 11.4a (46)
Copper hydroxide �

mancozeb
4.5 kg, 2.0 kg 0.1x 221.0 78.6 � 6.9bc (56) 15.5 � 0.3d (44) 53.6 � 12.3a (44)

161.8
1.0x 2,209.9 73.3 � 9.6bc (54) 16.1 � 0.2cd (38) 46.2 � 13.2a (38)

1,617.8
Sulfur 22.4 kg 0.1x 1,917.4 57.1 � 10.3c (50) 16.8 � 0.3bc(26) 36.4 � 15.2a (26)

1.0x 1,9174.4 56.7 � 8.3c (58) 17.3 � 0.6ab (24) 50.0 � 16.7a (24)

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
c Total number of nymphs used in each treatment is stated in the parenthesis.
d Adult sex ratio calculated as the percentage of females � (�females/(males � females)	 * 100).
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Assay methods used to ascertain the toxicity of an
insecticide for an insect can have a great effect on the
outcome of the test (Banken and Stark 1998). The
International Organization for Biological Control
(IOBC) has developed standard protocols for the
analysis of the impact of pesticides on non target
organisms (Hassan 1985). In the laboratory, individual
test organisms of uniform age either are exposed to
dried residue on treated surfaces or directly sprayed
and moved to a clean surface and monitored for mor-
tality or reduction in predation or parasitism (Banken
and Stark 1998). These tests are designed to assess the
effects of only one route of pesticide exposure,
whereas in the Þeld beneÞcial organisms may be ex-
posed through several routes, including direct contact
with spray droplets, uptake residues through contact
with contaminated surfaces, and oral uptake from con-
taminated food sources (Longley and Stark 1996). The
inßuence of natural routes of pesticide exposure may
have subsequent effects on development, reproduc-
tion, and survivorship that would not be detected in
the laboratory tests recommended by the IOBC (Lon-
gley and Stark 1996). These traditional bioassays can
greatly underestimate the impact of a pesticide (Ban-
ken and Stark 1998).

In contrast to laboratory bioassays, conducting sim-
ilar studies in the Þeld is difÞcult because of the cost,
labor intensity, and in most circumstances unavail-
ability of target insect stage at the right timing. Be-
cause of the severity of crop damage because of some
of the target pests involved, for most instances it is not
feasible to have a control plot in the Þeld to compare
the results of pesticide treatments. Although research
conducted on how these reduced-risk insecticides re-
act on important natural enemies in the Þeld is scarce,
there is information that reduced-risk insecticides
used in tree fruit orchards are more damaging to the
functional ecology of orchards than anticipated. In
some situations, the results of laboratory experiments
can be very different from the Þeld experiments; stud-
ies conducted in commercial orchards to measure
some of the reduced-risk insecticide tested in this
study (chlorantraniliprole, cyantraniliprole, and spin-
etoram) showed that D. brevis populations decline
drastically after insecticide treatments (unpublished
data). Our results on the intrinsic rate of increase of
D.brevis further support these studies. Because of lack
of Þeld studies, it remains unclear whether these in-
secticides are reduced-risk enough to complement
biological control programs (Gentz et al. 2010).

Table 7. Adult longevity (d), fecundity, fertility, and egg viability (%) (mean � SEM) of Deraeocoris brevis treated as adults with
different rates of insecticides or water (control)

Treatment
Max. label

rate/ha
Ratea Mg AI/liter

Adult longevity (d)b,c,f

Fecundityc,f,g Fertilityc,d,f
Egg viability

(%)c,e,fMale Female

Control Ð Ð Ð 33.0 � 2.3abc (13) 36.9 � 7.0a (13) 92.2 � 23.8abcd (12) 36.3 � 11.0abcd (12) 33.3 � 5.0ab (12)
Chlorantraniliprole 315.2 g 0.1x 11.8 21.4 � 4.7de (14) 8.2 � 5.8bcd (15) 56.4 � 0.5de (13) 18.5 � 5.8cde (13) 21.5 � 5.5b (13)

1.0x 117.9 36.9 � 6.5ab (10) 39.4 � 2.8a (14) 71.0 � 6.1cd (13) 27.1 � 7.3bcd (13) 35.3 � 6.4ab (13)
Cyantraniliprole 1.5 liters 0.1x 16.0 32.2 � 2.6abc (12) 27.3 � 9.5bcd (13) 66.7 � 6.2cde (11) 29.3 � 9.1bcd (11) 33.4 � 13.2ab (11)

1.0x 160.2 24.6 � 4.1cde (14) 35.4 � 8.3ab (13) 80.8 � 24.4bcd (15) 29.9 � 11.7bcd (15) 30.8 � 10.1ab (15)
Novaluron 3.7 liters 0.1x 38.9 33.2 � 5.7abc (12) 27.6 � 4.8cd (13) 70.2 � 22.8cd (12) 37.4 � 16.1abcd (12) 33.8 � 13.0ab (12)

1.0x 388.5 31.9 � 10.1abcd (12) 17.7 � 3.0ef (14) 20.3 � 13.2e (12) 3.3 � 3.3e (12) 4.4 � 4.4c (12)
Spinetoram 490.4 g 0.1x 13.1 18.4 � 4.7ef (14) 22.9 � 6.5cde (13) 90.0 � 21.2abcd (5) 30.5 � 14.0bcd (5) 31.6 � 6.7ab (5)

1.0x 131.1 11.6 � 4.4fg (13) 21.1 � 9.0de (14) 20.8 � 7.2e (7) 10.2 � 8.8de (7) 25.4 � 19.3b (7)
Lambda-cyhalothrin 187.1 ml 0.1x 5.0 4.9 � 1.9 g (15) 7.3 � 2.2fg (14) Ð Ð Ð

1.0x 49.9 1.7 � 0.3 g (15) 1.9 � 0.1 g (15) Ð Ð Ð

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means between males and females followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
c Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
d Fertility � total number of eggs hatched.
e Egg viability (%) � (�fertility/fecundity	*100).
f Total number of individuals used in each treatment is stated in the parenthesis.
g Fecundity � total number of eggs laid per 20-d period.

Table 8. Adult male and female longevity (d), fecundity, fertility, and egg viability (%) (mean � SEM) of Deraeocoris brevis treated
as adults with different rates of fungicides or water (control)

Treatment
Max. label

rate/ha
Ratea Mg AI/liter

Adult longevity (d)b,c,f

Fecundityc,f,g Fertilityc,d,f
Egg viability

(%)c,e,fMale Female

Control Ð Ð Ð 32.6 � 6.4ab (9) 34.7 � 5.1ab (9) 97.5 � 40.3a (4) 44.8 � 22.1ab (4) 51.3 � 13.3ab (4)
Copper hydroxide �

mancozeb
4.5 kg, 2.0 kg 0.1x 221.0, 161.8 30.3 � 4.7ab (12) 31.1 � 4.4ab (14) 79.0 � 22.4a (14) 26.1 � 9.8bc (14) 29.8 � 4.9bc (14)

1.0x 2209.9, 1617.8 36.9 � 3.6a (10) 30.7 � 4.8ab (13) 73.5 � 26.0a (11) 25.9 � 10.0bc (11) 35.7 � 9.7bc (11)
Sulfur 22.4 kg 0.1x 1917.4 31.2 � 3.5ab (12) 30.5 � 4.1ab (11) 39.9 � 13.9a (12) 9.3 � 5.2c (12) 29.8 � 11.4bc (12)

1.0x 19174.4 22.7 � 2.9b (12) 29.0 � 2.6ab (12) 39.4 � 16.4a (11) 9.1 � 6.1c (11) 12.6 � 8.9c (11)

a Equivalent to the max (1x) or 1/10 (0.1x) of max labeled rate dissolved in 378.5 liters water.
b Means between males and females followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
c Means within a column followed by the same letters are not signiÞcantly different, P � 0.05 (LSMEANS test).
d Fertility � total number of eggs hatched.
e Egg viability (%) � (�fertility/fecundity	*100).
f Total number of individuals used in each treatment is stated in the parenthesis.
g Fecundity � total number of eggs laid per 20-d period.
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Results from this study demonstrate that some of
the newer insecticides that are replacing organophos-
phorus insecticides in tree fruit IPM programs in the
United States are not as selective to natural enemies as
initially thought. Natural enemies that survive pesti-
cide exposures may still sustain signiÞcant detrimental
impact because of sublethal effects (Stark and Banks
2003). The impact of some of our experimental treat-
ments onD. brevis varied with chemistry and mode of
action from primarily acute toxicity, to reproductive
or other sublethal effects, or combination of both.
Studies combining lethal and sublethal effects with
population growth measurements provide better es-
timates for pesticide impacts on natural enemies. The
results from this study should be helpful for develop-
ing guidelines for using some of these insecticides to
minimize their impact onD. brevis and related natural
enemies in tree fruit orchards.
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