7 research outputs found

    Solid-phase XRN1 reactions for RNA cleavage: application in single-molecule sequencing

    Get PDF
    Modifications in RNA are numerous (āˆ¼170) and in higher numbers compared to DNA (āˆ¼5) making the ability to sequence an RNA molecule to identify these modifications highly tenuous using next generation sequencing (NGS). The ability to immobilize an exoribonuclease enzyme, such as XRN1, to a solid support while maintaining its activity and capability to cleave both the canonical and modified ribonucleotides from an intact RNA molecule can be a viable approach for single-molecule RNA sequencing. In this study, we report an enzymatic reactor consisting of covalently attached XRN1 to a solid support as the groundwork for a novel RNA exosequencing technique. The covalent attachment of XRN1 to a plastic solid support was achieved using EDC/NHS coupling chemistry. Studies showed that the solid-phase digestion efficiency of model RNAs was 87.6 Ā± 2.8%, while the XRN1 solution-phase digestion for the same model was 78.3 Ā± 4.4%. The ability of immobilized XRN1 to digest methylated RNA containing m6A and m5C ribonucleotides was also demonstrated. The processivity and clipping rate of immobilized XRN1 secured using single-molecule fluorescence measurements of a single RNA transcript demonstrated a clipping rate of 26 Ā± 5 nt sāˆ’1 and a processivity of >10.5 kb at 25Ā°C

    Openā€tubular nanoelectrochromatography (OTā€NEC): gelā€free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels

    No full text
    Electrophoresis or electrochromatography carried out in nanometer columns (width and depth) offers some attractive benefits compared to microscale columns. These advantages include unique separation mechanisms that are scale dependent, fast separation times, and simpler workflow due to the lack of a need for column packing and/or wall coatings to create a stationary phase. We report the use of thermoplastics, in this case PMMA, as the substrate for separating single-stranded DNAs (ssDNAs). Electrophoresis nanochannels were created in PMMA using nanoimprint lithography (NIL), which can produce devices at lower cost and in a higher production mode compared to the fabrication techniques required for glass devices. The nanochannel column in PMMA was successful in separating ssDNAs in free solution that was not possible using microchip electrophoresis in PMMA. The separation could be performed in \u3c1 s with resolution \u3e1.5 when carried out using at an electric field strength of 280 V/cm and an effective column length of 60 Ī¼m (100 nm Ɨ 100 nm, depth and width). The ssDNAs transport through the PMMA column was driven electrokinetically under the influence of an EOF. The results indicated that the separation was dominated by chromatographic effects using an open tubular nano-electrochromatography (OT-NEC) mode of separation. Interesting to these separations was that no column packing was required nor a wall coating to create the stationary phase; the separation was affected using the native polymer that was UV/O activated and an aqueous buffer mobile phase

    Nanofluidic devices for the separation of biomolecules

    No full text
    Over the last 30-years, microchip electrophoresis and its applications have expanded due to the benefits it offers. Nanochip electrophoresis, on the other hand, is viewed as an evolving area of electrophoresis because it offers some unique advantages not associated with microchip electrophoresis. These advantages arise from unique phenomena that occur in the nanometer domain not readily apparent in the microscale domain due to scale-dependent effects. Scale-dependent effects associated with nanochip electrophoresis includes high surface area-to-volume ratio, electrical double layer overlap generating parabolic flow even for electrokinetic pumping, concentration polarization, transverse electromigration, surface charge dominating flow, and surface roughness. Nanochip electrophoresis devices consist of channels with dimensions ranging from 1 to 1000 nm including classical (1-100 nm) and extended (100 nm - 1000 nm) nanoscale devices. In this review, we highlight scale-dependent phenomena associated with nanochip electrophoresis and the utilization of those phenomena to provide unique biomolecular separations that are not possible with microchip electrophoresis. We will also review the range of materials used for nanoscale separations and the implication of material choice for the top-down fabrication and operation of these devices. We will also provide application examples of nanochip electrophoresis for biomolecule separations with an emphasis on nano-electrophoresis (nEP) and nano-electrochromatography (nEC)

    Electrokinetic transport properties of deoxynucleotide monophosphates (dNMPs) through thermoplastic nanochannels

    No full text
    The electrokinetic behavior of molecules in nanochannels (< 100 nm in length) have generated interest due to the unique transport properties observed that are not seen in microscale channels. These nanoscale dependent transport properties include transverse electromigration arising from partial electrical double layer overlap, enhanced solute/wall interactions due to the small channel diameter, and field-dependent intermittent motion produced by surface roughness. In this study, the electrokinetic transport properties of deoxynucleotide monophosphates (dNMPs) were investigated, including the effects of electric field strength, surface effects, and composition of the carrier electrolyte (ionic concentration and pH). The dNMPs were labeled with a fluorescent reporter (ATTO 532) to allow tracking of the electrokinetic transport of the dNMPs through a thermoplastic nanochannel fabricated via nanoimprinting (110 nm x 110 nm, width x depth, and 100 mm in length). We discovered that the transport properties in plastic nanochannels of the dye-labeled dNMPs produced differences in their apparent mobilities that were not seen using microscale columns. We built histograms for each dNMP from their apparent mobilities under different operating conditions and fit the histograms to Gaussian functions from which the separation resolution could be deduced as a metric to gage the ability to identify the molecule based on their apparent mobility. We found that the resolution ranged from 0.73 to 2.13 at pH = 8.3. Changing the carrier electrolyte pH > 10 significantly improved separation resolution (0.80 -4.84) and reduced the standard deviation in the Gaussian fit to the apparent mobilities. At low buffer concentrations, decreases in separation resolution and increased standard deviations in Gaussian fits to the apparent mobilities of dNMPs were observed due to the increased thickness of the electric double layer leading to a partial parabolic flow profile. The results secured for the dNMPs in thermoplastic nanochannels revealed a high identification efficiency (> 99%) in most cases for the dNMPs due to differences in their apparent mobilities when using nanochannels, which could not be achieved using microscale columns

    Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels

    No full text
    With advances in the design and fabrication of nanofluidic devices during the last decade, there have been a few reports on nucleic acid analysis using nanoscale electrophoresis. The attractive nature of nanofluidics is the unique phenomena associated with this length scale that are not observed using microchip electrophoresis. Many of these effects are surface-related and include electrostatics, surface roughness, van der Waals interactions, hydrogen bonding, and the electric double layer. The majority of reports related to nanoscale electrophoresis have utilized glass-based devices, which are not suitable for broad dissemination into the separation community because of the sophisticated, time consuming, and high-cost fabrication methods required to produce the relevant devices. In this study, we report the use of thermoplastic nanochannels (110 nm x 110 nm, depth x width) for the free solution electrokinetic analysis of ribonucleotide monophosphates (rNMPs). Thermoplastic devices with micro- and nanofluidic networks were fabricated using nanoimprint lithography (NIL) with the structures enclosed via thermal fusion bonding of a cover plate to the fluidic substrate. Unique to this report is that we fabricated devices in cyclic olefin copolymer (COC) that was thermally fusion bonded to a COC cover plate. Results using COC/COC devices were compared to poly(methyl methacrylate), PMMA, devices with a COC cover plate. Our results indicated that at pH = 7.9, the electrophoresis in free solution resulted in an average resolution of the rNMPs \u3e4 (COC/COC device range = 1.94 - 8.88; PMMA/COC device range = 1.4 - 7.8) with some of the rNMPs showing field-dependent electrophoretic mobilities. Baseline separation of the rNMPs was not possible using PMMA- or COC-based microchip electrophoresis. We also found that COC/COC devices could be assembled and UV/O activated after device assembly with the dose of the UV/O affecting the magnitude of the electroosmotic flow, EOF. In addition, the bond strength between the substrate and cover plate of unmodified COC/COC devices was higher compared to PMMA/COC devices. The large differences in the electrophoretic mobilities of the rNMPs afforded by nanoscale electrophoresis will enable a new single-molecule sequencing platform we envision, which uses molecular-dependent electrophoretic mobilities to identify the constituent rNMPs generated from an intact RNA molecule using a processive exonuclease. With optimized nanoscale electrophoresis, the rNMPs could be identified via mobility matching at an accuracy \u3e99% in both COC/COC and PMMA/COC devices

    Label-Free Identification of Single Mononucleotides by Nanoscale Electrophoresis

    No full text
    Nanoscale electrophoresis allows for unique separations of single molecules, such as DNA/RNA nucleobases, and thus has the potential to be used as single molecular sensors for exonuclease sequencing. For this to be envisioned, label-free detection of the nucleotides to determine their electrophoretic mobility (i.e., time-of-flight, TOF) for highly accurate identification must be realized. Here, for the first time a novel nanosensor is shown that allows discriminating four 2-deoxyribonucleoside 5\u27-monophosphates, dNMPs, molecules in a label-free manner by nanoscale electrophoresis. This is made possible by positioning two sub-10 nm in-plane pores at both ends of a nanochannel column used for nanoscale electrophoresis and measuring the longitudinal transient current during translocation of the molecules. The dual nanopore TOF sensor with 0.5, 1, and 5 Āµm long nanochannel column lengths discriminates different dNMPs with a mean accuracy of 55, 66, and 94%, respectively. This nanosensor format can broadly be applicable to label-free detection and discrimination of other single molecules, vesicles, and particles by changing the dimensions of the nanochannel column and in-plane nanopores and integrating different pre- and postprocessing units to the nanosensor. This is simple to accomplish because the nanosensor is contained within a fluidic network made in plastic via replication
    corecore