6,836 research outputs found

    Ice Age Epochs and the Sun's Path Through the Galaxy

    Full text link
    We present a calculation of the Sun's motion through the Milky Way Galaxy over the last 500 million years. The integration is based upon estimates of the Sun's current position and speed from measurements with Hipparcos and upon a realistic model for the Galactic gravitational potential. We estimate the times of the Sun's past spiral arm crossings for a range in assumed values of the spiral pattern angular speed. We find that for a difference between the mean solar and pattern speed of Omega_Sun - Omega_p = 11.9 +/- 0.7 km/s/kpc the Sun has traversed four spiral arms at times that appear to correspond well with long duration cold periods on Earth. This supports the idea that extended exposure to the higher cosmic ray flux associated with spiral arms can lead to increased cloud cover and long ice age epochs on Earth.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions

    Get PDF
    The Schr\"odinger equations for the Coulomb and the Harmonic oscillator potentials are solved in the cosmic-string conical space-time. The spherical harmonics with angular deficit are introduced. The algebraic construction of the harmonic oscillator eigenfunctions is performed through the introduction of non-local ladder operators. By exploiting the hidden symmetry of the two-dimensional harmonic oscillator the eigenvalues for the angular momentum operators in three dimensions are reproduced. A generalization for N-dimensions is performed for both Coulomb and harmonic oscillator problems in angular deficit space-times. It is thus established the connection among the states and energies of both problems in these topologically non-trivial space-times.Comment: 15 page

    Studies on visceral leishmaniasis in Venezuela

    Get PDF

    Cascade Failure in a Phase Model of Power Grids

    Full text link
    We propose a phase model to study cascade failure in power grids composed of generators and loads. If the power demand is below a critical value, the model system of power grids maintains the standard frequency by feedback control. On the other hand, if the power demand exceeds the critical value, an electric failure occurs via step out (loss of synchronization) or voltage collapse. The two failures are incorporated as two removal rules of generator nodes and load nodes. We perform direct numerical simulation of the phase model on a scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure

    Impurity-induced diffusion bias in epitaxial growth

    Full text link
    We introduce two models for the action of impurities in epitaxial growth. In the first, the interaction between the diffusing adatoms and the impurities is ``barrier''-like and, in the second, it is ``trap''-like. For the barrier model, we find a symmetry breaking effect that leads to an overall down-hill current. As expected, such a current produces Edwards-Wilkinson scaling. For the trap model, no symmetry breaking occurs and the scaling behavior appears to be of the conserved-KPZ type.Comment: 5 pages(with the 5 figures), latex, revtex3.0, epsf, rotate, multico

    Size reduction of complex networks preserving modularity

    Get PDF
    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.Comment: 14 pages, 2 figure
    corecore