14,189 research outputs found
Comment on: Kinetic Roughening in Slow Combustion of Paper
We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515
(1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm
Scaling Behavior of Driven Interfaces Above the Depinning Transition
We study the depinning transition for models representative of each of the
two universality classes of interface roughening with quenched disorder. For
one of the universality classes, the roughness exponent changes value at the
transition, while the dynamical exponent remains unchanged. We also find that
the prefactor of the width scales with the driving force. We propose several
scaling relations connecting the values of the exponents on both sides of the
transition, and discuss some experimental results in light of these findings.Comment: Revtex 3.0, 4 pages in PRL format + 5 figures (available at
ftp://jhilad.bu.edu/pub/abbhhss/ma-figures.tar.Z ) submitted to Phys Rev Let
Canonical Transformations in a Higher-Derivative Field Theory
It has been suggested that the chiral symmetry can be implemented only in
classical Lagrangians containing higher covariant derivatives of odd order.
Contrary to this belief, it is shown that one can construct an exactly soluble
two-dimensional higher-derivative fermionic quantum field theory containing
only derivatives of even order whose classical Lagrangian exhibits chiral-gauge
invariance. The original field solution is expressed in terms of usual Dirac
spinors through a canonical transformation, whose generating function allows
the determination of the new Hamiltonian. It is emphasized that the original
and transformed Hamiltonians are different because the mapping from the old to
the new canonical variables depends explicitly on time. The violation of
cluster decomposition is discussed and the general Wightman functions
satisfying the positive-definiteness condition are obtained.Comment: 12 pages, LaTe
Conservação de pólen de cana-de-açúcar.
A conservação de pólen tem aplicações importantes no melhoramento genético de cana-de-açúcar. Entre as diversas aplicações, a realização de cruzamentos entre variedades assincrônicas no florescimento possibilita a exploração de novas combinações genéticas, isoladas pelas diferentes épocas de floração. Com o objetivo de viabilizar a realização de cruzamentos entre variedades assincrônicas no florescimento foi desenvolvida metodologia para coleta e conservação de pólen de cana-de-açúcar. A pesquisa foi conduzida em parceria entre Embrapa-Ridesa na Estação de Floração e Cruzamento Serra do Ouro, em Murici (AL) e em laboratórios, pertencentes à Embrapa Tabuleiros Costeiros e ao Programa de Melhoramento Genético de Cana-de-açúcar, localizado no Centro de Ciências Agrárias da Universidade Federal de Alagoas. Os grãos-de pólen foram conservados com controle de temperatura (Freezer a -18°C) e com redução de umidade (20% de teor de água). Quando analisada a viabilidade in vivo, através de cruzamentos com pólen armazenado por 30-60 dias, foram obtidas mais de uma centena de plantas (139). Parte destas plantas foram submetidas a Teste de Paternidade (19) e confirmaram a origem de pólen conservado (6). Estes resultados demonstram que é possível armazenar e manter viável o pólen de cana-de-açúcar para realizar cruzamentos entre variedades assincrônicas no florescimento em Alagoas/Brasil
A Study of Cool White Dwarfs in the Sloan Digital Sky Survey Data Release 12
In this work we study white dwarfs where to compare the differences in the
cooling of DAs and non-DAs and their formation channels. Our final sample is
composed by nearly DAs and more than non-DAs that are
simultaneously in the SDSS DR12 spectroscopic database and in the \textit{Gaia}
survey DR2. We present the mass distribution for DAs, DBs and DCs, where it is
found that the DCs are more massive than DAs and
DBs on average. Also we present the photometric effective temperature
distribution for each spectral type and the distance distribution for DAs and
non-DAs. In addition, we study the ratio of non-DAs to DAs as a function of
effective temperature. We find that this ratio is around for
effective temperature above and increases by a factor
of five for effective temperature cooler than . If we assume
that the increase of non-DA stars between to
is due to convective dilution, per cent of
the DAs should turn into non-DAs to explain the observed ratio. Our
determination of the mass distribution of DCs also agrees with the theory that
convective dilution and mixing are more likely to occur in massive white
dwarfs, which supports evolutionary models and observations suggesting that
higher mass white dwarfs have thinner hydrogen layers.Comment: 9 pages, 10 figures, accepted by MNRA
Higher-Derivative Two-Dimensional Massive Fermion Theories
We consider the canonical quantization of a generalized two-dimensional
massive fermion theory containing higher odd-order derivatives. The
requirements of Lorentz invariance, hermiticity of the Hamiltonian and absence
of tachyon excitations suffice to fix the mass term, which contains a
derivative coupling. We show that the basic quantum excitations of a
higher-derivative theory of order 2N+1 consist of a physical usual massive
fermion, quantized with positive metric, plus 2N unphysical massless fermions,
quantized with opposite metrics. The positive metric Hilbert subspace, which is
isomorphic to the space of states of a massive free fermion theory, is selected
by a subsidiary-like condition. Employing the standard bosonization scheme, the
equivalent boson theory is derived. The results obtained are used as a
guideline to discuss the solution of a theory including a current-current
interaction.Comment: 23 pages, Late
Emergence of Complex Dynamics in a Simple Model of Signaling Networks
A variety of physical, social and biological systems generate complex
fluctuations with correlations across multiple time scales. In physiologic
systems, these long-range correlations are altered with disease and aging. Such
correlated fluctuations in living systems have been attributed to the
interaction of multiple control systems; however, the mechanisms underlying
this behavior remain unknown. Here, we show that a number of distinct classes
of dynamical behaviors, including correlated fluctuations characterized by
-scaling of their power spectra, can emerge in networks of simple
signaling units. We find that under general conditions, complex dynamics can be
generated by systems fulfilling two requirements: i) a ``small-world'' topology
and ii) the presence of noise. Our findings support two notable conclusions:
first, complex physiologic-like signals can be modeled with a minimal set of
components; and second, systems fulfilling conditions (i) and (ii) are robust
to some degree of degradation, i.e., they will still be able to generate
-dynamics
- …