7 research outputs found

    Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure prediction and computational protein design require efficient yet sufficiently accurate descriptions of aqueous solvent. We continue to evaluate the performance of the Coulomb/Accessible Surface Area (CASA) implicit solvent model, in combination with the Charmm19 molecular mechanics force field. We test a set of model parameters optimized earlier, and we also carry out a new optimization in this work, using as a target a set of experimental stability changes for single point mutations of various proteins and peptides. The optimization procedure is general, and could be used with other force fields. The computation of stability changes requires a model for the unfolded state of the protein. In our approach, this state is represented by tripeptide structures of the sequence Ala-X-Ala for each amino acid type X. We followed an iterative optimization scheme which, at each cycle, optimizes the solvation parameters and a set of tripeptide structures for the unfolded state. This protocol uses a set of 140 experimental stability mutations and a large set of tripeptide conformations to find the best tripeptide structures and solvation parameters.</p> <p>Results</p> <p>Using the optimized parameters, we obtain a mean unsigned error of 2.28 kcal/mol for the stability mutations. The performance of the CASA model is assessed by two further applications: (i) calculation of protein-ligand binding affinities and (ii) computational protein design. For these two applications, the previous parameters and the ones optimized here give a similar performance. For ligand binding, we obtain reasonable agreement with a set of 55 experimental mutation data, with a mean unsigned error of 1.76 kcal/mol with the new parameters and 1.47 kcal/mol with the earlier ones. We show that the optimized CASA model is not inferior to the Generalized Born/Surface Area (GB/SA) model for the prediction of these binding affinities. Likewise, the new parameters perform well for the design of 8 SH3 domain proteins where an average of 32.8% sequence identity relative to the native sequences was achieved. Further, it was shown that the computed sequences have the character of naturally-occuring homologues of the native sequences.</p> <p>Conclusion</p> <p>Overall, the two CASA variants explored here perform very well for a wide variety of applications. Both variants provide an efficient solvent treatment for the computational engineering of ligands and proteins.</p

    Modélisation de l'évolution dirigée de la tyrosyl-ARNt synthétase in silico. Introduction d'acides aminés non naturels dans les protéines.

    No full text
    Although most proteins are usually synthesized with L-amino acids, D-amino acids are present in organisms in their free states, included in shorts peptides and even in particular proteins. Introducing D-amino acids in proteins in a controlled way can provide a biotechnological advantage, adding new function to proteins. Tyrosyl-tRNA synthetase (TyrRS) has already been used to incorporate more than thirty tyrosine analogues in proteins. Using the D-enantiomer of the tyrosine can give resistance to proteases in cells. Because proteases recognizes less proteins with such amino-acids, peptides bearing those will stay active much longer. TyrRS has a natural though weak activity for D-Tyrosine. The purpose of this thesis is to improve this activity by an in silico directed evolution method. The method consists in randomly mutating a protein to select mutants with the desired properties, mimicking mechanism of natural evolution. We use for this study an in house program of directed evolution. It is based on an iterative optimization procedure of both protein sequence and structure. Some mutants have been predicted by this method and proposed to biochemists for experimental in vivo validations. They find that some mutants present a weak, but measurable, activity for the D-Tyrosine. The field of study has thus been enlarged to other mutation positions around the tyrosine ammonium group. We study TyrRS and its binding with either L or D tyrosine and furthermore consider an activated form of the aminoacid, the tyrosinyl-adenylate in both geometry L and D. This compound has been modeled with the E. coli TyrRS to make molecular dynamic studies. We have use the large ressources of the CINES (Centre Informatique National de l'Education Supérieure) and our laboratory cluster to simulate a maximum of molecular dynamics on our predicted mutants. Another goal of this work was to improve our in house protein design methods with a more sophisticated solvent model. In order to do so, we used Born's model based on the Poisson-Boltzmann theory. Rather than describing solvent as individual molecules, this model considers it as an electrostatic continuum surrounding the protein. We validated that new protocol on samples presenting experimental data to compare with. We succesfully tested three small peptides before further simulationss were carried out in the same way on a Bacillus stearothermophilus TyrRS mutants set.Les protéines sont synthétisées essentiellement à partir d'acides aminés L. Cependant, les acides aminés D sont naturellement présents dans notre organisme. Il existe plusieurs mécanismes de régulation pour limiter leur présence. Il peut y avoir un intérêt bio-technologique à introduire des acides aminés D dans les protéines pour leur conférer des fonctions chimiques nouvelles. Les protéases, chargées de dégrader les peptides, reconnaissent moins bien les protéines possédant de tels acides aminés. Dans notre cas, présenter la tyrosine sous son énantiomère D donnerait un avantage par rapport aux protéases. En effet, un peptide qui aurait des acides aminés D, resterait plus longtemps actif dans un organisme. La tyrosyl-ARNt synthétase (TyrRS) a déjà été utilisée pour l'incorporation de plus d'une trentaine d'analogues de la tyrosine dans les protéines. Cette enzyme possède déjà une activité naturelle pour la D-tyr, mais celle ci est très faible. L'objectif du présent travail est de l'améliorer par une méthode d'évolution dirigée iin silico. Cette méthode consiste à muter aléatoirement une protéine puis à sélectionner les mutants qui ont les propriétés désirées, mimant les mécanismes de l'évolution naturelle. L'évolution dirigée textit{in silico} a déjà été utilisée pour l'ingénierie d'un grand nombre de protéines. On utilise pour cette étude le programme d'évolution dirigée développé au laboratoire qui procède à une optimisation itérative de la séquence et de la structure. Des mutations ont été retenues par cette méthode et proposées aux expérimentalistes du laboratoire de biochimie pour des validations expérimentales. Ils ont conclut que plusieurs mutants présentent une activité faible mais mesurable pour la D-Tyrosine. L'étude a été étendue à d'autres résidus proches de l'ammonium de la L-Tyr. Nous avons identifié d'autres positions qui pourraient être intéressantes à muter. L'étude, faite dans un premier temps avec le ligand tyrosine, a été ensuite améliorée en considérant le ligand Tyrosyl adénylate (tyrAMP). C'est l'intermédiaire qui va interagir avec l'ARNt pour former l'ARNt-Tyr . Le L-TyrAMP et le D-TyrAMP ont tous deux été modélisés avec la TyrRS d'Escherichia coli. Toutes ces modélisations ont conduit à une liste de séquences mutantes qui ont été prédites comme favorables à la liaison du D-TyrAMP. Chacune des séquences obtenues pour les deux synthétases a ensuite fait l'objet d'une étude plus approfondie visant à déterminer la spécificité pour le ligand D-TyrAMP. Suite à cela, nous avons sélectionné une dizaine de séquences de TyrRS mutantes d'Escherichia coli afin de réaliser des calculs de dynamique moléculaire. Nous avons utilisé les ressources du super calculateur du CINES (Centre Informatique Nationale de l'Education Supérieur) pour faire des études de dynamique moléculaire. Une meilleure estimation de l'affinité de ces différents mutants pour le D-TyrAMP a été atteinte. Un autre but de la thèse était d'améliorer notre protocole de Protein Design en adoptant un champ de force tout atome et un modèle de solvant plus sophistiqué. Pour le solvant, le modèle de Born généralisé que nous avons implémenté dans le protocole est basé sur la théorie de Poisson-Boltzmann, avec un continuum diélectrique qui entoure la protéine. Les validations sur des peptides tests ont été concluantes. L'évolution dirigée de la TyrRS de Bacillus Stearothermophilus sert de validation à ce protocole car des mesures expérimentales pour une quinzaine de mutants sont disponibles

    Modélisation de l'évolution dirigée de la tyrosyl-ARNt synthétase in silico. Introduction d'acides aminés non naturels dans les protéines

    No full text
    Les protéines sont synthétisées essentiellement à partir d'acides aminés L. Cependant, les acides aminés D sont naturellement présents dans notre organisme. Il existe plusieurs mécanismes de régulation pour limiter leur présence. Il peut y avoir un intérêt bio-technologique à introduire des acides aminés D dans les protéines pour leur conférer des fonctions chimiques nouvelles. Les protéases, chargées de dégrader les peptides, reconnaissent moins bien les protéines possédant de tels acides aminés. Dans notre cas, présenter la tyrosine sous son énantiomère D donnerait un avantage par rapport aux protéases. En effet, un peptide qui aurait des acides aminés D, resterait plus longtemps actif dans un organisme. La tyrosyl-ARNt synthétase (TyrRS) a déjà été utilisée pour l'incorporation de plus d'une trentaine d'analogues de la tyrosine dans les protéines. Cette enzyme possède déjà une activité naturelle pour la D-tyr, mais celle ci est très faible. L'objectif du présent travail est de l'améliorer par une méthode d'évolution dirigée iin silico. Cette méthode consiste à muter aléatoirement une protéine puis à sélectionner les mutants qui ont les propriétés désirées, mimant les mécanismes de l'évolution naturelle. L'évolution dirigée textit{in silico} a déjà été utilisée pour l'ingénierie d'un grand nombre de protéines. On utilise pour cette étude le programme d'évolution dirigée développé au laboratoire qui procède à une optimisation itérative de la séquence et de la structure. Des mutations ont été retenues par cette méthode et proposées aux expérimentalistes du laboratoire de biochimie pour des validations expérimentales. Ils ont conclut que plusieurs mutants présentent une activité faible mais mesurable pour la D-Tyrosine. L'étude a été étendue à d'autres résidus proches de l'ammonium de la L-Tyr. Nous avons identi é d'autres positions qui pourraient être intéressantes à muter. L'étude, faite dans un premier temps avec le ligand tyrosine, a été ensuite améliorée en considérant le ligand Tyrosyl adénylate (tyrAMP). C'est l'intermédiaire qui va interagir avec l'ARNt pour former l'ARNt-Tyr . Le L-TyrAMP et le D-TyrAMP ont tous deux été modélisés avec la TyrRS d'Escherichia coli. Toutes ces modélisations ont conduit à une liste de séquences mutantes qui ont été prédites comme favorables à la liaison du D-TyrAMP. Chacune des séquences obtenues pour les deux synthétases a ensuite fait l'objet d'une étude plus approfondie visant à déterminer la spéci cité pour le ligand D-TyrAMP. Suite à cela, nous avons sélectionné une dizaine de séquences de TyrRS mutantes d'Escherichia coli a n de réaliser des calculs de dynamique moléculaire. Nous avons utilisé les ressources du super calculateur du CINES (Centre Informatique Nationale de l'Education Supérieur) pour faire des études de dynamique moléculaire. Une meilleure estimation de l'affinité de ces différents mutants pour le D-TyrAMP a été atteinte. Un autre but de la thèse était d'améliorer notre protocole de Protein Design en adoptant un champ de force tout atome et un modèle de solvant plus sophistiqué. Pour le solvant, le modèle de Born généralisé que nous avons implémenté dans le protocole est basé sur la théorie de Poisson-Boltzmann, avec un continuum diélectrique qui entoure la protéine. Les validations sur des peptides tests ont été concluantes. L'évolution dirigée de la TyrRS de Bacillus Stearothermophilus sert de validation à ce protocole car des mesures expérimentales pour une quinzaine de mutants sont disponibles.Although most proteins are usually synthesized with L-amino acids, D-amino acids are present in organisms in their free states, included in shorts peptides and even in particular proteins. Introducing D-amino acids in proteins in a controlled way can provide a biotechnological advantage, adding new function to proteins. Tyrosyl-tRNA synthetase (TyrRS) has already been used to incorporate more than thirty tyrosine analogues in proteins. Using the D-enantiomer of the tyrosine can give resistance to proteases in cells. Because proteases recognizes less proteins with such amino-acids, peptides bearing those will stay active much longer. TyrRS has a natural though weak activity for D-Tyrosine. The purpose of this thesis is to improve this activity by an in silico directed evolution method. The method consists in randomly mutating a protein to select mutants with the desired properties, mimicking mechanism of natural evolution. We use for this study an in house program of directed evolution. It is based on an iterative optimization procedure of both protein sequence and structure. Some mutants have been predicted by this method and proposed to biochemists for experimental in vivo validations. They find that some mutants present a weak, but measurable, activity for the D-Tyrosine. The field of study has thus been enlarged to other mutation positions around the tyrosine ammonium group. We study TyrRS and its binding with either L or D tyrosine and furthermore consider an activated form of the aminoacid, the tyrosinyl-adenylate in both geometry L and D. This compound has been modeled with the E. coli TyrRS to make molecular dynamic studies. We have use the large ressources of the CINES (Centre Informatique National de l'Education Supérieure) and our laboratory cluster to simulate a maximum of molecular dynamics on our predicted mutants. Another goal of this work was to improve our in house protein design methods with a more sophisticated solvent model. In order to do so, we used Born's model based on the Poisson-Boltzmann theory. Rather than describing solvent as individual molecules, this model considers it as an electrostatic continuum surrounding the protein. We validated that new protocol on samples presenting experimental data to compare with. We succesfully tested three small peptides before further simulationss were carried out in the same way on a Bacillus stearothermophilus TyrRS mutants set.PALAISEAU-Polytechnique (914772301) / SudocSudocFranceF

    Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase.

    No full text
    International audienceComputational Protein Design (CPD) is a promising method for high throughput protein and ligand mutagenesis. Recently, we developed a CPD method that used a polar-hydrogen energy function for protein interactions and a Coulomb/Accessible Surface Area (CASA) model for solvent effects. We applied this method to engineer aspartyl-adenylate (AspAMP) specificity into Asparaginyl-tRNA synthetase (AsnRS), whose substrate is asparaginyl-adenylate (AsnAMP). Here, we implement a more accurate function, with an all-atom energy for protein interactions and a residue-pairwise generalized Born model for solvent effects. As a first test, we compute aminoacid affinities for several point mutants of Aspartyl-tRNA synthetase (AspRS) and Tyrosyl-tRNA synthetase and stability changes for three helical peptides and compare with experiment. As a second test, we readdress the problem of AsnRS aminoacid engineering. We compare three design criteria, which optimize the folding free-energy, the absolute AspAMP affinity, and the relative (AspAMP-AsnAMP) affinity. The sequences and conformations are improved with respect to our previous, polar-hydrogen/CASA study: For several designed complexes, the AspAMP carboxylate forms three interactions with a conserved arginine and a designed lysine, as in the active site of the AspRS:AspAMP complex. The conformations and interactions are well maintained in molecular dynamics simulations and the sequences have an inverted specificity, favoring AspAMP over AsnAMP. The method is not fully successful, since experimental measurements with the seven most promising sequences show that they do not catalyze at a detectable level the adenylation of Asp (or Asn) with ATP. This may be due to weak AspAMP binding and/or disruption of transition-state stabilization

    Redesigning the stereospecificity of tyrosyl-tRNA synthetase

    No full text
    International audienceD-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled
    corecore