5 research outputs found

    MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis

    Get PDF
    Despite that cognitive impairment is a known early feature present in multiple sclerosis (MS) patients, the biological substrate of cognitive deficits in MS remains elusive. In this study, we assessed whether T1 relaxometry, as obtained in clinically acceptable scan times by the recent Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence, may help identifying the structural correlate of cognitive deficits in relapsing-remitting MS patients (RRMS). Twenty-nine healthy controls (HC) and forty-nine RRMS patients underwent high-resolution 3T magnetic resonance imaging to obtain optimal cortical lesion (CL) and white matter lesion (WML) count/volume and T1 relaxation times. T1 z scores were then obtained between T1 relaxation times in lesion and the corresponding HC tissue. Patient cognitive performance was tested using the Brief Repeatable Battery of Neuro-psychological Tests. Multivariate analysis was applied to assess the contribution of MRI variables (T1 z scores, lesion count/volume) to cognition in patients and Bonferroni correction was applied for multiple comparison. T1 z scores were higher in WML (p<0.001) and CL-I (p<0.01) than in the corresponding normal-appearing tissue in patients, indicating relative microstructural loss. (1) T1 z scores in CL-I (p=0.01) and the number of CL-II (p=0.04) were predictors of long-term memory; (2) T1 z scores in CL-I (β=0.3; p=0.03) were independent determinants of long-term memory storage, and (3) lesion volume did not significantly influenced cognitive performances in patients. Our study supports evidence that T1 relaxometry from MP2RAGE provides information about microstructural properties in CL and WML and improves correlation with cognition in RRMS patients, compared to conventional measures of disease burden

    Effects of the dose of erythropoiesis stimulating agents on cardiovascular events, quality of life, and health-related costs in hemodialysis patients: the clinical evaluation of the dose of erythropoietins (C.E. DOSE) trial protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anemia is a risk factor for death, adverse cardiovascular outcomes and poor quality of life in patients with chronic kidney disease (CKD). Erythropoietin Stimulating Agents (ESA) are commonly used to increase hemoglobin levels in this population. In observational studies, higher hemoglobin levels (around 11-13 g/dL) are associated with improved survival and quality of life compared to hemoglobin levels around 9-10 g/dL. A systematic review of randomized trials found that targeting higher hemoglobin levels with ESA causes an increased risk of adverse vascular outcomes. It is possible, but has never been formally tested in a randomized trial, that ESA dose rather than targeted hemoglobin concentration itself mediates the increased risk of adverse vascular outcomes. The Clinical Evaluation of the DOSe of Erythropoietins (C.E. DOSE) trial will assess the benefits and harms of a high versus a low fixed ESA dose for the management of anemia in patients with end stage kidney disease.</p> <p>Methods/Design</p> <p>This is a randomized, prospective open label blinded end-point (PROBE) trial due to enrol 2204 hemodialysis patients in Italy. Patients will be randomized 1:1 to 4000 IU/week versus 18000 IU/week of intravenous epoietin alfa or beta, or any other ESA in equivalent doses. The dose will be adjusted only if hemoglobin levels fall outside the 9.5-12.5 g/dL range. The primary outcome will be a composite of all-cause mortality, non fatal stroke, non fatal myocardial infarction and hospitalization for cardiovascular causes. Quality of life and costs will also be assessed.</p> <p>Discussion</p> <p>The C.E.DOSE study will help inform the optimal therapeutic strategy for the management of anemia of hemodialysis patients, improving clinical outcomes, quality of life and costs, by ascertaining the potential benefits and harms of different fixed ESA doses.</p> <p>Trial registration</p> <p>Clinicaltrials.gov NCT00827021</p

    Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    Get PDF
    none10ISSN: 1662-5099Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.noneGabriele Lignani;Enrico Ferrea;Francesco Difato;Jessica Amarù;Eleonora Ferroni;Eleonora Lugarà;Stefano Espinoza;Raul R. Gainetdinov;Pietro Baldelli;Fabio BenfenatiLignani, Gabriele; Enrico, Ferrea; Francesco, Difato; Amaru', Jessica; Eleonora, Ferroni; Eleonora, Lugarà; Stefano, Espinoza; Raul R., Gainetdinov; Baldelli, Pietro; Benfenati, Fabi

    Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study

    No full text
    corecore