6 research outputs found

    Consequences of Hyperoxia and the Toxicity of Oxygen in the Lung

    Get PDF
    Oxygen (O2) is life essential but as a drug has a maximum positive biological benefit and accompanying toxicity effects. Oxygen is therapeutic for treatment of hypoxemia and hypoxia associated with many pathological processes. Pathophysiological processes are associated with increased levels of hyperoxia-induced reactive O2 species (ROS) which may readily react with surrounding biological tissues, damaging lipids, proteins, and nucleic acids. Protective antioxidant defenses can become overwhelmed with ROS leading to oxidative stress. Activated alveolar capillary endothelium is characterized by increased adhesiveness causing accumulation of cell populations such as neutrophils, which are a source of ROS. Increased levels of ROS cause hyperpermeability, coagulopathy, and collagen deposition as well as other irreversible changes occurring within the alveolar space. In hyperoxia, multiple signaling pathways determine the pulmonary cellular response: apoptosis, necrosis, or repair. Understanding the effects of O2 administration is important to prevent inadvertent alveolar damage caused by hyperoxia in patients requiring supplemental oxygenation

    Study protocol, randomized controlled trial: reducing symptom burden in patients with heart failure with preserved ejection fraction using ubiquinol and/or D-ribose

    No full text
    Abstract Background Heart failure (HF), the leading cause of morbidity and mortality in the US, affects 6.6 million adults with an estimated additional 3 million people by 2030. More than 50% of HF patients have heart failure with preserved left ventricular ejection fraction (HFpEF). These patients have impaired cardiac muscle relaxation and diastolic filling, which investigators have associated with cellular energetic impairment. Patients with HFpEF experience symptoms of: (1) fatigue; (2) shortness of breath; and (3) swelling (edema) of the lower extremities. However, current HF guidelines offer no effective treatment to address these underlying pathophysiologic mechanisms. Thus, we propose a biobehavioral symptom science study using ubiquinol and D-ribose (therapeutic interventions) to target mitochondrial bioenergetics to reduce the complex symptoms experienced by patients with HFpEF. Methods Using a randomized, double-blind, placebo-controlled design, the overall objective is to determine if administering ubiquinol and/or D-ribose to HFpEF patients for 12 weeks would decrease the severity of their complex symptoms and improve their cardiac function. The measures used to assess patients’ perceptions of their health status and level of vigor (energy) will be the Kansas City Cardiomyopathy Questionnaire (KCCQ) and Vigor subscale of the Profile of Mood States. The 6-min walk test will be used to test exercise tolerance. Left ventricular diastolic function will be assessed using innovative advanced echocardiography software called speckle tracking. We will measure B-type natriuretic peptides (secreted from ventricles in HF) and lactate/ATP ratio (measure of cellular energetics). Discussions Ubiquinol (active form of Coenzyme Q10) and D-ribose are two potential treatments that can positively affect cellular energetic impairment, the major underlying mechanism of HFpEF. Ubiquinol, the reduced form of CoQ10, is more effective in adults over the age of 50. In patients with HFpEF, mitochondrial deficiency of ubiquinol results in decreased adenosine triphosphate (ATP) synthesis and reduced scavenging of reactive oxygen species. D-ribose is a substrate required for ATP synthesis and when administered has been shown to improve impaired myocardial bioenergetics. Therefore, if the biological underpinning of deficient mitochondrial ATP in HFpEF is not addressed, patients will suffer major symptoms including lack of energy, fatigue, exertional dyspnea, and exercise intolerance. Trial registration ClinicalTrials.gov Identifier: NCT03133793; Data of Registration: April 28, 2017
    corecore