6 research outputs found

    IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance

    Get PDF
    // Amanda L. Rinkenbaugh 1,2 , Patricia C. Cogswell 2,3 , Barbara Calamini 4 , Denise E. Dunn 4 , Anders I. Persson 5,6 , William A. Weiss 5,6 , Donald C. Lo 4 and Albert S. Baldwin 2 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA 2 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA 3 Chordoma Foundation, Durham, NC, USA 4 Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA 5 Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA 6 Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA Correspondence to: Albert Baldwin, email: // Keywords : NF-κB, glioblastoma, cancer stem cells, tumor-initiating cells Received : March 14, 2016 Accepted : September 24, 2016 Published : October 06, 2016 Abstract Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma

    The NF-κB Pathway and Cancer Stem Cells

    No full text
    The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells (cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem cell biology

    Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer

    No full text
    Abstract Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient’s diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient’s tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC
    corecore