33 research outputs found

    The Effect of Brief Anxiety Interventions on Reported Anxiety and Math Test Performance

    No full text
    Research suggests that math and test anxiety have detrimental impacts on performance in math. To prevent these effects, a number of interventions have been developed, but these interventions have not been extensively tested. In the current study, we examine whether four brief anxiety interventions reduce state anxiety and/or increase math performance. We also examine whether any of the interventions weaken the relation between math or test anxiety and math performance. Participants were 300 college students varying in math and test anxiety levels. Participants were randomly assigned to one of four single-session interventions, which each took 5 minutes or less (reappraisal as challenge, reappraisal as excitement, expressive writing, and look ahead), or a no intervention control group. Results generally show that none of the interventions had an effect on reports of state anxiety or performance on a difficult math assessment, with the exception that students in the expressive writing condition reported higher levels of state anxiety. None of the interventions served to attenuate the relation between math or test anxiety and math performance. These findings were not consistent with results of previous work, and suggest that interventions may need to be more extensive in order to have an effect on state anxiety and math performance

    Host Adaptation of a Wolbachia Strain after Long-Term Serial Passage in Mosquito Cell Lines▿

    Get PDF
    The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to the new host. To examine the process of adaptation to a novel host, we transferred a life-shortening Wolbachia strain, wMelPop, from the fruit fly Drosophila melanogaster into a cell line derived from the mosquito Aedes albopictus. After long-term serial passage in this cell line, we transferred the mosquito-adapted wMelPop into cell lines derived from two other mosquito species, Aedes aegypti and Anopheles gambiae. After a prolonged period of serial passage in mosquito cell lines, wMelPop was reintroduced into its native host, D. melanogaster, by embryonic microinjection. The cell line-adapted wMelPop strains were characterized by a loss of infectivity when reintroduced into the original host, grew to decreased densities, and had reduced abilities to cause life-shortening infection and cytoplasmic incompatibility compared to the original strain. We interpret these shifts in phenotype as evidence for genetic adaptation to the mosquito intracellular environment. The use of cell lines to preadapt Wolbachia to novel hosts is suggested as a possible strategy to improve the success of transinfection in novel target insect species

    Genomic evolution of the pathogenic Wolbachia strain, wMelPop

    Get PDF
    Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequential derivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedes aegypti mosquitoes, creating wMelPop-PGYP, which was sequenced after 4 years in the insect host. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales
    corecore