15 research outputs found

    Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer

    Get PDF
    High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)-deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC

    Establishing and Maintaining an Extensive Library of Patient-Derived Xenograft Models

    No full text
    Patient-derived xenograft (PDX) models have recently emerged as a highly desirable platform in oncology and are expected to substantially broaden the way in vivo studies are designed and executed and to reshape drug discovery programs. However, acquisition of patient-derived samples, and propagation, annotation and distribution of PDXs are complex processes that require a high degree of coordination among clinic, surgery and laboratory personnel, and are fraught with challenges that are administrative, procedural and technical. Here, we examine in detail the major aspects of this complex process and relate our experience in establishing a PDX Core Laboratory within a large academic institution

    In Vitro

    No full text
    Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE) specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM) and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device

    CryoPause: A New Method to Immediately Initiate Experiments after Cryopreservation of Pluripotent Stem Cells

    No full text
    Human pluripotent stem cells (PSCs) provide an unlimited cell source for cell therapies and disease modeling. Despite their enormous power, technical aspects have hampered reproducibility. Here, we describe a modification of PSC workflows that eliminates a major variable for nearly all PSC experiments: the quality and quantity of the PSC starting material. Most labs continually passage PSCs and use small quantities after expansion, but the “just-in-time” nature of these experiments means that quality control rarely happens before use. Lack of quality control could compromise PSC quality, sterility, and genetic integrity, which creates a variable that might affect results. This method, called CryoPause, banks PSCs as single-use, cryopreserved vials that can be thawed and immediately used in experiments. Each CryoPause bank provides a consistent source of PSCs that can be pre-validated before use to reduce the possibility that high levels of spontaneous differentiation, contamination, or genetic integrity will compromise an experiment

    Abstract 5680: TRK xDFG mutations trigger a sensitivity switch from type I to II kinase inhibitors

    No full text
    Abstract Background: TRK inhibition is the standard of care for patients with TRK fusion-positive solid tumors. TRK kinase domain mutations that impair drug binding are common mechanisms of resistance to 1st-generation TRK inhibitors. While 2nd-generation TRK inhibitors were designed to maintain kinase inhibition in this setting, the resistance to these agents is still poorly characterized. Methods and Results: We sequenced paired tumor biopsies and serial cell-free DNA (cfDNA) collected before therapy and at progression from patients treated with 2nd-generation TRK inhibitors (selitrectinib or repotrectinib). We identified 5 cases in which the acquisition of xDFG (G667) TRKA mutations was associated with resistance. Two patients whose tumors carried these substitutions pre-selitrectinib never responded to therapy, while three additional cases acquired these mutations upon progression to either selitrectinib or repotrectinib. In-silico molecular modeling combined with molecular dynamic simulations predicted that TRKA xDFG substitutions can confer resistance to 2nd-generation TRK inhibitors by generating steric hindrance that compromises drug binding. Accordingly, in vitro kinase assays showed that the IC50 for selitrectinib of TRKA xDFG mutants was >12 to >8000 fold higher compared to the IC50 of either TRKA wild type or the selitrectinib-sensitive TRKA G595R solvent front mutant. Interestingly, our data also suggest that TRKA xDFG substitutions induce conformational changes that stabilize the inactive (xDFG-out) conformation of the kinase, thus sensitizing it to type II inhibition. In vitro microscale thermophoresis revealed that the binding affinity of type II TRK inhibitors (cabozantinib or foretinib) to the TRKA G667C-mutant kinase was 8-10-fold higher compared to the type I inhibitor selitrectinib. We then tested the efficacy of type II TRK inhibitors against TRKA xDFG mutants in different cell models. A Bcan-Ntrk1-driven mouse model knocked in by CRISPR Cas9 to express the xDFG mutations was sensitive to type II but not to type I TRK inhibitors. Similar results were obtained using an LMNA-NTRK1-positive colorectal cell line that acquired the G667C substitution upon chronic selitrectinib treatment. Type II TRK inhibitor therapy achieved complete and durable responses also in patient-derived models with TRKA xDFG-mediated resistance to type I 2nd-generation agents. Conclusions: Our study uncovers a molecular switch induced by xDFG mutations that limits the sensitivity to type I kinase inhibitors by conformational changes that favor the inactive xDFG-out kinase state. This same switch in turn sensitizes these mutant kinases to type II inhibitors that effectively engage this inactive conformation. These results provide a paradigm for the rational development of 3rd-generation TKIs that address the problem of conformational resistance in tumors that are driven by oncogenic kinases. Citation Format: Emiliano Cocco, Ji Eun Lee, Srinivasaraghavan Kannan, Alison M. Schram, Helen H. Won, Sophie Shifman, Amanda Kulick, Laura Baldino, Eneda Toska, Sabrina Arena, Benedetta Mussolin, Ram Kannan, Neil Vasan, Alexander N. Gorelick, Michael F. Berger, Yi Liao, Uwe Rix, Alberto Bardelli, Jacklyn Hechtman, Elisa de Stanchina, David M. Hyman, Chandra Verma, Andrea Ventura, Alexander Drilon, Maurizio Scaltriti. TRK xDFG mutations trigger a sensitivity switch from type I to II kinase inhibitors [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5680

    Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis.

    No full text
    To study genetic factors influencing the progression and therapeutic responses of advanced prostate cancer, we developed a fast and flexible system that introduces genetic alterations relevant to human disease directly into the prostate glands of mice using tissue electroporation. These electroporation-based genetically engineered mouse models (EPO-GEMM) recapitulate features of traditional germline models and, by modeling genetic factors linked to late-stage human disease, can produce tumors that are metastatic and castration-resistant. A subset of tumors with alterations acquired spontaneous WNT pathway alterations, which are also associated with metastatic prostate cancer in humans. Using the EPO-GEMM approach and an orthogonal organoid-based model, we show that WNT pathway activation drives metastatic disease that is sensitive to pharmacologic WNT pathway inhibition. Thus, by leveraging EPO-GEMMs, we reveal a functional role for WNT signaling in driving prostate cancer metastasis and validate the WNT pathway as therapeutic target in metastatic prostate cancer. SIGNIFICANCE: Our understanding of the factors driving metastatic prostate cancer is limited by the paucity of models of late-stage disease. Here, we develop EPO-GEMMs of prostate cancer and use them to identify and validate the WNT pathway as an actionable driver of aggressive metastatic disease.

    Abstract LB-118: Resistance to TRK inhibition mediated by convergent MAP kinase pathway activation

    No full text
    Abstract Background: TRK inhibition is now standard of care for advanced pediatric and adult patients (pts) with TRK fusion solid tumors, regardless of origin. To date, TRK kinase domain mutations are the only known resistance mechanism, and next-generation TRK inhibitors active against these mutations such as LOXO-195 are being developed. We reasoned some pts will develop TRK-independent resistance and hypothesized that these pts will require unique therapeutic approaches. Methods: Paired tumor biopsies and serial cell-free DNA (cfDNA) prospectively collected from pts with TRK fusion-positive cancers treated with first- and next-generation TRK inhibitors before treatment and at progression were sequenced. In parallel, pt-derived and engineered models were analyzed. Results: Alterations involving upstream non-TRK receptor kinases and downstream MAPK pathway members were initially identified in tumors from 3 TRK fusion-positive gastrointestinal (GI) cancer pts who developed resistance to TRK inhibitors. Pt 1 with CTRC-NTRK1 pancreatic cancer developed temporally distinct emergent BRAF V600E and KRAS G12D mutations. Pt 2 with LMNA-NTRK1 colorectal cancer developed temporally distinct KRAS G12A and G12D mutations. Pt 3 with PLEKHA6-NTRK1 cholangiocarcinoma developed focal MET amplification. Phenocopying these clinical observations, pt-derived xenografts and primary cell lines developed BRAF and KRAS mutations following chronic TRK inhibition. Consistently, ectopic expression of these alterations conferred resistance to TRK inhibitors. Given that all 3 index pts had GI cancers, we expanded serial cfDNA sequencing to 5 additional TRK fusion-positive GI disease, identifying 3 with emergent MAPK alterations at progression, bringing the overall frequency of acquired MAPK alterations in GI cancers analyzed to 75% (6/8). To further evaluate whether these emergent alterations induced functional dependence on ERK signaling, pts 1-3 were treated with agents targeting these emergent alterations (dabrafenib + trametinib, LOXO-195 + trametinib, and LOXO-195 + crizotinib, respectively). Pt 1 achieved transient tumor regression, followed by outgrowth of KRAS-mutant disease. Pt 3 achieved a 4.5 months tumor regression. Sequencing at progression in pt 3 identified multiple acquired MET point mutations known to interfere with crizotinib binding. Conclusions: These data suggest that a subset of TRK fusion-positive cancers will develop off-target mechanisms of resistance to TRK inhibition. Relative to other TRK fusion-positive tumors, GI cancers may have a higher propensity for developing these bypass alterations that demonstrate remarkable convergence on ERK signaling. A portion of these mechanisms may be managed with simultaneous targeting of the TRK and MAPK pathways, although additional modeling is required to determine if upfront treatment would confer more durable responses. Citation Format: Emiliano Cocco, Amanda Kulick, Sandra Misale, Rona Yaeger, Pedram Razavi, Helen H. Won, Ryan Ptashkin, Jaclyn F. Hechtman, Eneda Toska, James Cownie, Romel Somwar, Sophie Shifman, Marissa Mattar, S Duygu Selçuklu, Aliaksandra Samoila, Sean Guzman, Brian B. Tuch, Kevin Ebata, Elisa de Stanchina, Rebecca J. Nagy, Richard B. Lanman, Michael F. Berger, Marc Ladanyi, David M. Hyman, Alexander Drilon, Maurizio Scaltriti, Alison M. Schram. Resistance to TRK inhibition mediated by convergent MAP kinase pathway activation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr LB-118
    corecore