292 research outputs found

    Topological self-organization of strongly interacting particles

    Full text link
    We investigate the self-organization of strongly interacting particles confined in 1D and 2D. We consider hardcore bosons in spinless Hubbard lattice models with short-range interactions. We show that many-body states with topological features emerge at different energy bands separated by large gaps. The topology manifests in the way the particles organize in real space to form states with different energy. Each of these states contains topological defects/condensations whose Euler characteristic can be used as a topological number to categorize states belonging to the same energy band. We provide analytical formulas for this topological number and the full energy spectrum of the system for both sparsely and densely filled systems. Furthermore, we analyze the connection with the Gauss-Bonnet theorem of differential geometry, by using the curvature generated in real space by the particle structures. Our result is a demonstration of how states with topological characteristics, emerge in strongly interacting many-body systems following simple underlying rules, without considering the spin, long-range microscopic interactions, or external fields.Comment: 6 pages, 1 figure, some revisions, published in EPJ

    Energetical self-organization of a few strongly interacting particles

    Full text link
    We study the quantum self-organization of a few interacting particles with strong short-range interactions. The physical system is modeled via a 2D Hubbard square lattice model, with a nearest-neighbor interaction term of strength U and a second nearest-neighbor hopping t. For t=0 the energy of the system is determined by the number of bonds between particles that lie on adjacent sites in the Hubbard lattice. We find that this bond order persists for the ground and some of the excited states of the system, for strong interaction strength, at different fillings of the system. For our analysis we use the Euler characteristic of the network/graph grid structures formed by the particles in real space (Fock states), which helps to quantify the energetical(bond) ordering. We find multiple ground and excited states, with integer Euler numbers, whose values persist from the t=0t=0 case, for strong interaction U>>tU>>t. The corresponding quantum phases for the ground state contain either density-wave-order(DWO) for low fillings, where the particles stay apart form each other, or clustering-order(CO) for high fillings, where the particles form various structures as they condense into clusters. In addition, we find various excited states containing superpositions of Fock states, whose probability amplitudes are self-tuned in a way that preserves the integer value of the Euler characteristic from the t=0t=0 limit.Comment: 8 pages, 7 figures, some updates in the text and figures, published in EPJ

    Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models

    Full text link
    We study the quantum self-organization of interacting particles in one-dimensional(1D) many-body systems, modeled via Hubbard chains with short-range interactions between the particles. We show the emergence of 1D states with density-wave and clustering order, related to topology, at odd denominator fillings that appear also in the fractional-quantum-Hall-effect (FQHE), which is a 2D electronic system with Coulomb interactions between the electrons and a perpendicular magnetic field. For our analysis we use an effective topological measure applied on the real space wavefunction of the system, the Euler characteristic describing the clustering of the interacting particles. The source of the observed effect is the spatial constraints imposed by the interaction between the particles. In overall, we demonstrate a simple mechanism to reproduce many of the effects appearing in the FQHE, without requiring a Coulomb interaction between the particles or the application of an external magnetic field.Comment: 6 pages, 5 figures, small updates in the text and the references, published in EPJ

    Coherent wave transmission in quasi-one-dimensional systems with L\'evy disorder

    Get PDF
    We study the random fluctuations of the transmission in disordered quasi-one-dimensional systems such as disordered waveguides and/or quantum wires whose random configurations of disorder are characterized by density distributions with a long tail known as L\'evy distributions. The presence of L\'evy disorder leads to large fluctuations of the transmission and anomalous localization, in relation to the standard exponential localization (Anderson localization). We calculate the complete distribution of the transmission fluctuations for different number of transmission channels in the presence and absence of time-reversal symmetry. Significant differences in the transmission statistics between disordered systems with Anderson and anomalous localizations are revealed. The theoretical predictions are independently confirmed by tight binding numerical simulations.Comment: 10 pages, 6 figure

    Approximation Algorithms for Computing Maximin Share Allocations

    Get PDF
    We study the problem of computing maximin share allocations, a recently introduced fairness notion. Given a set of n agents and a set of goods, the maximin share of an agent is the best she can guarantee to herself, if she is allowed to partition the goods in any way she prefers, into n bundles, and then receive her least desirable bundle. The objective then is to find a partition, where each agent is guaranteed her maximin share. Such allocations do not always exist, hence we resort to approximation algorithms. Our main result is a 2/3-approximation that runs in polynomial time for any number of agents and goods. This improves upon the algorithm of Procaccia and Wang (2014), which is also a 2/3-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of the algorithm in Procaccia and Wang (2014), exploiting the construction of carefully selected matchings in a bipartite graph representation of the problem. Furthermore, motivated by the apparent difficulty in establishing lower bounds, we undertake a probabilistic analysis. We prove that in randomly generated instances, maximin share allocations exist with high probability. This can be seen as a justification of previously reported experimental evidence. Finally, we provide further positive results for two special cases arising from previous works. The first is the intriguing case of three agents, where we provide an improved 7/8-approximation. The second case is when all item values belong to {0, 1, 2}, where we obtain an exact algorith
    • …
    corecore