6 research outputs found

    Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire

    Get PDF
    The species of Artemisia are well known in the Mediterranean region, especially in Morocco, for their traditional uses and health benefit. In this study, we were interested in two species of Artemisia, namely A. herba alba Asso and A. mesatlantica Maire. These species were collected from different soils of the Central Middle Atlas (loamy, stony, limestone and rocky soil) with different atmospheres. Extraction of essential oils from the leaves and flowering tops was carried out by hydrodistillation in Clevenger apparatus. Chemical composition analysis was further carried out using gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA) was performed to determine the similarities and dissimilarities in the chemical compositions of these six essential oils. The results obtained showed that the essential oil contents extracted from the flowering tops vary from one species to another according to the place of harvest, altitude, soil type and climate. The essential oil yield is between 0.84% and 2.19% (mL/100 g). Chemical analysis revealed that the chemotype of A. herba alba in limestone soil with a subhumid to humid atmosphere is trans-thujone (33.78%), while camphor (46.19%) is for limestone soil with a semi-arid atmosphere, vetivenic acid (14.91%) and davana ether (14.64%) are for limestone soil with a semi-arid and arid atmosphere and camphor (18.39%) is for loamy and stony soil with a semi-arid atmosphere. As for A. mesatlantica from a rocky soil on limestone with a subhumid to humid atmosphere, the main component is camphor (44.86%), and that of limestone soil with a subhumid to the humid atmosphere trans-thujone (41.08%). In addition, HCA affirmed the PCA and allowed us to distinguish between four groups. Our findings observed differences in the chemical compositions of the isolated essential oils most likely related to many factors such as the climates in the regions of the samples collected, altitudes and soil types

    Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia : A. herba alba Asso and A. mesatlantica Maire

    Get PDF
    The species of Artemisia are well known in the Mediterranean region, especially in Morocco, for their traditional uses and health benefit. In this study, we were interested in two species of Artemisia, namely A. herba alba Asso and A. mesatlantica Maire. These species were collected from different soils of the Central Middle Atlas (loamy, stony, limestone and rocky soil) with different atmospheres. Extraction of essential oils from the leaves and flowering tops was carried out by hydrodistillation in Clevenger apparatus. Chemical composition analysis was further carried out using gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA) was performed to determine the similarities and dissimilarities in the chemical compositions of these six essential oils. The results obtained showed that the essential oil contents extracted from the flowering tops vary from one species to another according to the place of harvest, altitude, soil type and climate. The essential oil yield is between 0.84% and 2.19% (mL/100 g). Chemical analysis revealed that the chemotype of A. herba alba in limestone soil with a subhumid to humid atmosphere is trans-thujone (33.78%), while camphor (46.19%) is for limestone soil with a semi-arid atmosphere, vetivenic acid (14.91%) and davana ether (14.64%) are for limestone soil with a semi-arid and arid atmosphere and camphor (18.39%) is for loamy and stony soil with a semi-arid atmosphere. As for A. mesatlantica from a rocky soil on limestone with a subhumid to humid atmosphere, the main component is camphor (44.86%), and that of limestone soil with a subhumid to the humid atmosphere trans-thujone (41.08%). In addition, HCA affirmed the PCA and allowed us to distinguish between four groups. Our findings observed differences in the chemical compositions of the isolated essential oils most likely related to many factors such as the climates in the regions of the samples collected, altitudes and soil typesPeer reviewe

    Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia : A. herba alba Asso and A. mesatlantica Maire

    Get PDF
    The species of Artemisia are well known in the Mediterranean region, especially in Morocco, for their traditional uses and health benefit. In this study, we were interested in two species of Artemisia, namely A. herba alba Asso and A. mesatlantica Maire. These species were collected from different soils of the Central Middle Atlas (loamy, stony, limestone and rocky soil) with different atmospheres. Extraction of essential oils from the leaves and flowering tops was carried out by hydrodistillation in Clevenger apparatus. Chemical composition analysis was further carried out using gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA) was performed to determine the similarities and dissimilarities in the chemical compositions of these six essential oils. The results obtained showed that the essential oil contents extracted from the flowering tops vary from one species to another according to the place of harvest, altitude, soil type and climate. The essential oil yield is between 0.84% and 2.19% (mL/100 g). Chemical analysis revealed that the chemotype of A. herba alba in limestone soil with a subhumid to humid atmosphere is trans-thujone (33.78%), while camphor (46.19%) is for limestone soil with a semi-arid atmosphere, vetivenic acid (14.91%) and davana ether (14.64%) are for limestone soil with a semi-arid and arid atmosphere and camphor (18.39%) is for loamy and stony soil with a semi-arid atmosphere. As for A. mesatlantica from a rocky soil on limestone with a subhumid to humid atmosphere, the main component is camphor (44.86%), and that of limestone soil with a subhumid to the humid atmosphere trans-thujone (41.08%). In addition, HCA affirmed the PCA and allowed us to distinguish between four groups. Our findings observed differences in the chemical compositions of the isolated essential oils most likely related to many factors such as the climates in the regions of the samples collected, altitudes and soil typesPeer reviewe

    Phytochemistry, Biological and Pharmacological Activities of the <i>Anacyclus pyrethrum</i> (L.) Lag: A Systematic Review

    No full text
    Anacyclus pyrethrum (L.) (Asteraceae) is an important annual medicinal herb and is widespread in Morocco and Algeria. Most of its parts are used in traditional medicine and the roots are the most important parts used. The present review gives an account of the updated information on its phytochemical and pharmacological properties. We have collected the essential characteristics and the different scientific data of the A. pyrethrum species, and reviewed its potential. It is seen from the literature that A. pyrethrum is a rich source of the phytochemical constituents such as alkaloids (pellitorin) and n-alkylamides. This species also contains pyrethrins, sesamin, traces of essential oils and a wide range of other chemical compounds. These active substances possess antimicrobial and anti-inflammatory activities. The plant has an antidiabetic, insecticidal and immunostimulatory effect, as well as an aphrodisiac and antioxidant potentials, and various other important medicinal properties. Many traditional uses are also reported in previous research such as for rheumatism, sciatica, colds, neuralgia and paralysis. This species is considered to be a sialagogue, and used in the treatment of stomach ailments, diseases of inflammation of the mouth, against cysts in the genital tract and to relieve toothaches. Thus, further research must be carried out in order to establish any relationship between the traditional uses, phytochemistry and toxicity. Moreover, A. pyrethrum is quite promising as a medicinal agent, so further clinical trials should be performed to prove its efficacy

    Chemical Composition, Antioxidants, Antibacterial, and Insecticidal Activities of <i>Origanum elongatum</i> (Bonnet) Emberger & Maire Aerial Part Essential Oil from Morocco

    No full text
    The aim of this research is to profile the chemical composition of the essential oil (EO) extracted from the aerial parts of Origanum elongatum (O. elongatum) and to evaluate its antioxidant, antibacterial and insecticidal activities on Ceratitis capitata adults. Gas chromatography coupled with mass spectrometry (GC/MS) revealed a total of 27 constituents in EO of O. elongatum, which accounted for 99.08% of its constituents. Carvacrol (57.32%) was a main component, followed by p-cymene (14.70%) and γ-terpinene (9.84%). The antioxidant activity of O. elongatum EO was investigated using DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (Ferric reducing antioxidant power), and TCA (the total antioxidant capacity) methods. This EO exhibited a remarkable antiradical and reducing power against DPPH (IC50 = 2.855 ± 0.018μL/mL), FRAP (EC0.5 = 0.124 ± 0.013µL/mL) and TCA (IC50 = 14.099 ± 0.389 mg AAE/g of the EO). The antibacterial tests in vitro, using the disc and dilution methods, were carried out on nine pathogenic bacteria isolated from the hospital patients, such as Enterococcus faecalis, Serratia fonticola, Staphylococcus aureus, Acinétobacter baumannii, Klebsiella oxytoca, Klebsiella pneumoniae sensible, E.coli sensible, E.coli resistante, and Enterobacter aerogenes. The EO demonstrated a considerable antibacterial activity with minimum inhibitory concentrations (MIC) from 2 to 8 µL/mL against all strains except Staphylococcus aureus (MIC = 32 µL/mL). Regarding the insecticidal activity, the fumigation test indicated a high efficacy (100% mortality), and a lethal dose of LD50  =  17 ± 0.53 μL/L air was found after 24 h of exposureTherefore, O. elongatum EO could be utilized as a natural antioxidant, antibiotic and biopesticides
    corecore