36 research outputs found

    Digital All-Optical Physical-Layer Network Coding

    Get PDF
    Network coding (NC) has recently attracted intense research focus for its potential to provide network throughput enhancements, security and reduced network congestions, improving in this way the overall network performance without requiring additional resources. In this chapter, the all-optical physical-layer network coding (AOPNC) technique is presented, focusing on digital encoding schemes that are based on optical XOR logical gates. It is also discussed how digital AOPNC can be implemented between sub-carrier-modulated (SCM) optical signals in radio-over-fiber (RoF) networks, circumventing the enhanced complexity arising by the use of SCM signals and the asynchrony that might exist between the data arriving at the encoding unit. AOPNC demonstrations are described for simple on/off keyed (OOK)-SCM data signals, as well as for more sophisticated higher-order phase modulation formats aiming to further improve spectrum efficiency and transmission capacity

    Efficient and Validated Time Domain Numerical Modeling of Semiconductor Optical Amplifiers (SOAs) and SOA-based Circuits

    Get PDF
    Semiconductor optical amplifiers (SOAs) have been extensively used in a wealth of telecom and datacom applications as a powerful building block that features large optical gain, all-optical gating function, fast response, and ease of integration with other functional semiconductor devices. As fabrication technologies are steadily maturing toward enhanced yield, SOAs are foreseen to play a pivotal role in complex photonics integrated circuits (PICs) of the near future. From a design standpoint, accurate numerical modeling of SOA devices is required toward optimizing PICs response from a system perspective, while enhanced circuit complexity calls for efficient solvers. In this book chapter, we present established experimentally validated SOA numerical modeling techniques and a gain parameterization procedure applicable to a wide range of SOA devices. Moreover, we describe multigrid concepts and implicit schemes that have been only recently presented to SOA modeling, enabling adaptive time stepping at the SOA output, with dense sampling at transient phenomena during the gain recovery and scarce sampling during the steady-state response. Overall, a holistic simulation methodology approach along with recent research trends are described, aiming to form the basis of further developments in SOA modeling

    Assessment of Different Channel Equalization Algorithms for a Converged OFDM-Based 5G mm-wave A-RoF System at 60 GHz

    No full text
    In this article, we simulate a converged 5G mm-wave analogue radio-over-fiber (A-RoF) system at 60 GHz, and perform offline signal processing to equalize the dispersive optical link with the three most frequently employed algorithms, i.e., the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA) and the adaptive median filtering (AMF), which are implemented in Matlab. The performances of the different algorithms are compared for various optical fiber lengths with respect to the EVM values obtained before and after equalization. In the case of QPSK in OFDM subcarriers, it is observed that the CMA algorithm performs better than the LMS and MF algorithms, with 2% and 1.4% EVM improvement respectively, while for 16QAM in OFDM subcarriers it is observed that the LMS algorithm has a very small improvement of 0.2% EVM compared to the MF algorithm, while CMA is not suitable for 16QAM modulation in the proposed converged 5G mm-wave A-RoF system at 60 GHz

    Assessment of Different Channel Equalization Algorithms for a Converged OFDM-Based 5G mm-wave A-RoF System at 60 GHz

    No full text
    In this article, we simulate a converged 5G mm-wave analogue radio-over-fiber (A-RoF) system at 60 GHz, and perform offline signal processing to equalize the dispersive optical link with the three most frequently employed algorithms, i.e., the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA) and the adaptive median filtering (AMF), which are implemented in Matlab. The performances of the different algorithms are compared for various optical fiber lengths with respect to the EVM values obtained before and after equalization. In the case of QPSK in OFDM subcarriers, it is observed that the CMA algorithm performs better than the LMS and MF algorithms, with 2% and 1.4% EVM improvement respectively, while for 16QAM in OFDM subcarriers it is observed that the LMS algorithm has a very small improvement of 0.2% EVM compared to the MF algorithm, while CMA is not suitable for 16QAM modulation in the proposed converged 5G mm-wave A-RoF system at 60 GHz

    Tactile Displays: a short overview and recent developments

    No full text
    Tactation is the sensation perceived by the sense of touch. Tactation is based on the skin receptors. The skin nerves can be stimulated by mechanical, electrical or thermal stimuli. Apart from fibers for pain, skin has six more types of receptors. A review of the state of the art concerning the physiological and technological principles, considerations and characteristics, as well as latest implementations of micro-actuator based tactile graphic displays and the relative software interfaces structures and representations is presented. Fabrication technologies are reviewed in order to demonstrate the potential in tactile applications. Existing electronic Braille displays for accessibility are limited to text-based information. Graphic tactile displays enable for viewing images by the sense of touch on a reusable surface and substitution of the visual/auditory sense. Applications include education, engineering/artistic design, web surfing, and viewing of art and photographs. Tactile substitution can be used in augmenting accessibility for the blind or deaf in order to: (a) to enhance access to computer graphical user interfaces, (b) to enhance mobility in controlled environments. In general tactation based interfaces may allow communication of visual information to the brain in situations where the visual or hearing system is already overloaded such as race car drivers, airplane pilots, operating rooms, virtual reality and tele-presence
    corecore