10 research outputs found

    Corrigendum to “Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy” [Neuromuscular Disorders, Vol. 30 (6) 2020, 492-502] (Neuromuscular Disorders (2020) 30(6) (492–502), (S0960896620301188), (10.1016/j.nmd.2020.05.002))

    Get PDF
    This article reported on the results from a phase 2 trial of domagrozumab and its open-label extension in patients with Duchenne muscular dystrophy (Clinicaltrials.gov identifiers: NCT02310763 and NCT02907619). The manuscript also provided results on two secondary endpoints for magnetic resonance imaging (MRI), muscle volume and muscle volume index. The authors regret that, following publication of the results and in preparation for a separate publication on MRI results from this trial, the MRI images were reviewed and segmentation errors were identified. As a result, the team worked to (1) Perform a rigorous quality inspection of all analysed data; (2) Identify cases where there were incorrect segmentations; (3) correct segmentation errors; (4) Re-analyse all data with correct segmentation. Using the updated MRI data, the MMRM analysis showed there was a change in the significance of secondary endpoints evaluating Thigh Muscle Volume and Muscle Volume Index. No significant differences between treatment groups in muscle volume measures were found in the original analysis. These results have not altered the overall interpretation of the study results but do necessitate revisions to the article. These data confirm that the trial design and execution adequately tested the hypothesis that myostatin inhibition would slow or delay the loss of function in patients with Duchenne muscular dystrophy (DMD). The increase in muscle volume observed by MRI in patients with DMD treated with domagrozumab is in accordance with mechanism of action for domagrozumab, which targets myostatin, a negative regulator of muscle growth. The increase in muscle volume did not lead to a clinical benefit in patients with DMD. The primary endpoint (4 stair climb) did not meet statistical significance, nor did the other functional tests. The study was terminated due to lack of efficacy. Full details of the needed revisions are as follows: 1. In the results section 3.6 (page 8, second paragraph), we reported no significant differences in mean percent change from baseline between domagrozumab and placebo for both muscle volume and muscle volume index. This paragraph was replaced with the following text: “There was a significant difference between domagrozumab and placebo in the mean percent change from baseline in thigh muscle volume at Week 17 (difference 2.945%, P=0.0087) and Week 49 (differences 4.087%, P=0.0298), and in muscle volume index at Week 33 (difference 2.612%, P=0.0376) and Week 49 (differences3.208%, P=0.0411).” 2. In the discussion (page 9), the following sentence, “Although neither muscle volume nor muscle volume index measures were statistically significant in this study, they are both consistent with a potential anabolic effect.” was replaced with, “The increase in muscle volume observed on MRI in patients with DMD treated with domagrozumab, is in accordance with mechanism of action for this compound which targets myostatin, a negative regulator of muscle growth. However, the increase in muscle volume did not lead to a clinical benefit (improved function) in patients with DMD.” 3. In view of the correction to the Results section, this is now reflected in the abstract which has changed to read: “There were no significant between-group differences in secondary clinical endpoints, except for the thigh muscle volume and muscle volume index measures (P\u3c0.05).” The authors would like to apologise for any inconvenience caused

    Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes

    No full text
    Endothelial dysfunction reflects an imbalance of vasodilators and vasoconstrictors. Endogenous endothelin activity seems to be increased in human obesity and type 2 diabetes, and cellular studies suggest that this factor may itself reduce bioavailable nitric oxide (NO). We studied 20 lean, 20 obese, and 14 type 2 diabetic individuals under three protocols, measuring leg vascular responses to intra-arterial infusions of NG-monomethyl-L-arginine (L-NMMA; an inhibitor of NO synthase) alone or in combination with BQ123 (an antagonist of type A endothelin receptors) or phentolamine (used as a control vasodilator). NO synthase inhibition alone (study 1) produced an ~40% increase in leg vascular resistance (LVR) in all three participant groups, which was not statistically different across groups (increase in LVR: lean, 135 ± 28; obese, 140 ± 32; type 2 diabetic, 184 ± 51 units; NS). By design, BQ123 at the infused rate of 3 µmol/min produced equivalent ~35% reductions in LVR across groups. The subsequent addition of L-NMMA produced a greater increase in LVR among obese participants than lean or type 2 diabetic participants (study 2: lean, 182 ± 48; obese, 311 ± 66; type 2 diabetic, 186 ± 40; P = 0.07). Compared with study 1, the effect of L-NMMA was magnified by BQ123 in obese participants but not in lean or type 2 diabetic participants (P = 0.005, study 1 vs. 2; P = 0.03 for group effect). Phentolamine (75 mg/min) produced vasodilation in obese participants comparable to that seen with BQ123 but failed to augment the L-NMMA response. Endothelin antagonism unmasks or augments NO synthesis capacity in obese but not type 2 diabetic participants. This suggests that impaired NO bioavailability as a result of endogenous endothelin may contribute to endothelial dysfunction in obesity, in addition to direct vasoconstrictor effects of endothelin. In contrast, endothelin antagonism alone is insufficient to restore impaired NO bioavailability in diabetes

    Hyperinsulinemia fails to augment ET-1 action in the skeletal muscle vascular bed in vivo in humans

    No full text
    Endogenous endothelin action is augmented in human obesity and type 2 diabetes and contributes to endothelial dysfunction and impairs insulin-mediated vasodilation in humans. We hypothesized that insulin resistance-associated hyperinsulinemia could preferentially drive endothelin-mediated vasoconstriction. We applied hyperinsulinemic-euglycemic clamps with higher insulin dosing in obese subjects than lean subjects (30 vs. 10 mU·m−2·min−1, respectively), with the goal of matching insulin's nitric oxide (NO)-mediated vascular effects. We predicted that, under these circumstances, insulin-stimulated endothelin-1 (ET-1) action (assessed with the type A endothelin receptor antagonist BQ-123) would be augmented in proportion to hyperinsulinemia. NO bioactivity was assessed using the nitric oxide synthase inhibitor NG-monomethyl-l-arginine. Insulin-mediated vasodilation and insulin-stimulated NO bioavailability were well matched across groups by this approach. As expected, steady-state insulin levels were approximately threefold higher in obese than lean subjects (109.2 ± 10.2 pmol/l vs. 518.4 ± 84.0, P = 0.03). Despite this, the augmentation of insulin-mediated vasodilation by BQ-123 was not different between groups. ET-1 flux across the leg was not augmented by insulin alone but was increased with the addition of BQ-123 to insulin (P = 0.01 BQ-123 effect, P = not significant comparing groups). Endothelin antagonism augmented insulin-stimulated NO bioavailability and NOx flux, but not differently between groups and not proportional to hyperinsulinemia. These findings do not support the hypothesis that insulin resistance-associated hyperinsulinemia preferentially drives endothelin-mediated vasoconstriction

    Rationale and Design for a GRADE Substudy of Continuous Glucose Monitoring

    No full text
    corecore