15 research outputs found

    Associations between Season and Gametocyte Dynamics in Chronic Plasmodium falciparum Infections

    Get PDF
    Introduction: In a markedly seasonal malaria setting, the transition from the transmission-free dry season to the transmission season depends on the resurgence of the mosquito population following the start of annual rains. The sudden onset of malaria outbreaks at the start of the transmission season suggests that parasites persist during the dry season and respond to either the reappearance of vectors, or correlated events, by increasing the production of transmission stages. Here, we investigate whether Plasmodium falciparum gametocyte density and the correlation between gametocyte density and parasite density show seasonal variation in chronic (largely asymptomatic) carriers in eastern Sudan. Materials and Methods: We recruited and treated 123 malaria patients in the transmission season 2001. We then followed them monthly during four distinct consecutive epidemiological seasons: transmission season 1, transmission-free season, pre-clinical period, and transmission season 2. In samples collected from 25 participants who fulfilled the selection criteria of the current analysis, we used quantitative PCR (qPCR) and RT-qPCR to quantify parasite and gametocyte densities, respectively. Results and Discussion: We observed a significant increase in gametocyte density and a significantly steeper positive correlation between gametocyte density and total parasite density during the pre-clinical period compared to the preceding transmission-free season. However, there was no corresponding increase in the density or prevalence of total parasites or gametocyte prevalence. The increase in gametocyte production during the pre-clinical period supports the hypothesis that P. falciparum may respond to environmental cues, such as mosquito biting, to modulate its transmission strategy. Thus, seasonal changes may be important to ignite transmission in unstable-malaria settings

    The Effect of Counterions on the Detection of Cu2+ Ions in Aqueous Solutions Using Quartz Tuning Fork (QTF) Sensors Modified with L-Cysteine Self-Assembled Monolayers: Experimental and Quantum Chemical DFT Study

    No full text
    In this study, a sensing device employing a gold-coated quartz tuning fork (QTF) modified with a self-assembled monolayer (SAM) of L-cysteine was evaluated for the sensitive detection of Cu2+ ions in aqueous solutions. Three copper (II) salts, CuSO4, CuCl2, and Cu(NO3)2, at four different concentrations (10−12, 10−10, 10−8, and 10−6 M) in small (100 μL) water sample amounts were each used as analytes to investigate the influence of their counterions in the detection of the Cu2+ ions. It was found that, among the counterions, the sulfate anion had the largest effect upon the detection of Cu2+ in water, in the following order: SO42− > Cl− > NO3−. The lower limit of detection of the Cu2+ ions detected was in the 10−12 M range. The frequency shifts measured with the QTFs relative to deionized water were inversely proportional to the concentration/mass of the analytes. Density functional theory calculations were conducted to understand the effect of the counterions on the respective electronic interaction energies for the apparent host–guest binding of the analytes with L-cysteine and with gold surface-bound L-cysteine molecules. Gas phase (both with and uncorrected BSSE) and solution phase interaction energies (ΔIE) calculated at the B3LYP/LANL2DZ and ωB97XD levels of theory showed that the stability for the complexes were in the following order: [L-cysteine]⊃[CuSO4] > [L-cysteine]⊃[CuCl2] > [L-cysteine]⊃[Cu(NO3)2], which supports our experimental findings, as they were in the same order as the experimentally observed order for the copper salts tested: CuSO4 > CuCl2 > Cu(NO3)2

    The Effect of Counterions on the Detection of Cu<sup>2+</sup> Ions in Aqueous Solutions Using Quartz Tuning Fork (QTF) Sensors Modified with L-Cysteine Self-Assembled Monolayers: Experimental and Quantum Chemical DFT Study

    No full text
    In this study, a sensing device employing a gold-coated quartz tuning fork (QTF) modified with a self-assembled monolayer (SAM) of L-cysteine was evaluated for the sensitive detection of Cu2+ ions in aqueous solutions. Three copper (II) salts, CuSO4, CuCl2, and Cu(NO3)2, at four different concentrations (10−12, 10−10, 10−8, and 10−6 M) in small (100 μL) water sample amounts were each used as analytes to investigate the influence of their counterions in the detection of the Cu2+ ions. It was found that, among the counterions, the sulfate anion had the largest effect upon the detection of Cu2+ in water, in the following order: SO42− > Cl− > NO3−. The lower limit of detection of the Cu2+ ions detected was in the 10−12 M range. The frequency shifts measured with the QTFs relative to deionized water were inversely proportional to the concentration/mass of the analytes. Density functional theory calculations were conducted to understand the effect of the counterions on the respective electronic interaction energies for the apparent host–guest binding of the analytes with L-cysteine and with gold surface-bound L-cysteine molecules. Gas phase (both with and uncorrected BSSE) and solution phase interaction energies (ΔIE) calculated at the B3LYP/LANL2DZ and ωB97XD levels of theory showed that the stability for the complexes were in the following order: [L-cysteine]⊃[CuSO4] > [L-cysteine]⊃[CuCl2] > [L-cysteine]⊃[Cu(NO3)2], which supports our experimental findings, as they were in the same order as the experimentally observed order for the copper salts tested: CuSO4 > CuCl2 > Cu(NO3)2

    Detection of Volatile Alcohol Vapors Using PMMA-Coated Micromechanical Sensors: Experimental and Quantum Chemical DFT Analysis

    No full text
    Micromechanical sensors, in which the sensor response is created as a result of molecular interactions on the sensors&rsquo; surfaces, have been employed as a powerful technique for rapid and sensitive detection of low concentrations of chemical and biological materials. In the study reported herein, poly(methyl methacrylate) (PMMA)-coated microcantilever (MCL) sensors were used to detect the vapors of volatile alcohols (methanol, ethanol, and isopropanol) at three different concentrations. A vapor generator was used to generate and flow the alcohol vapor onto the PMMA coated MCL surface in a closed system chamber. The vapor adsorption onto the MCL surface results in a rapid and measurable deflection of the MCL. No significant deflections of the uncoated MCL occurred when the different vapors were passed through into the microcantilever chamber. Linear concentration&ndash;deflection responses were observed, with the highest sensitivity shown with methanol, followed by ethanol and then isopropanol. Density functional theory (DFT) quantum chemical calculations were conducted to estimate the electronic interaction energies (&Delta;IE) between the alcohol molecules and MMA and two different model tetrameric segments of PMMA. The computed &Delta;IEs were in the same order as the experimentally observed order: methanol &gt; ethanol &gt; isopropanol

    Detection of Volatile Alcohol Vapors Using PMMA-Coated Micromechanical Sensors: Experimental and Quantum Chemical DFT Analysis

    No full text
    Micromechanical sensors, in which the sensor response is created as a result of molecular interactions on the sensors’ surfaces, have been employed as a powerful technique for rapid and sensitive detection of low concentrations of chemical and biological materials. In the study reported herein, poly(methyl methacrylate) (PMMA)-coated microcantilever (MCL) sensors were used to detect the vapors of volatile alcohols (methanol, ethanol, and isopropanol) at three different concentrations. A vapor generator was used to generate and flow the alcohol vapor onto the PMMA coated MCL surface in a closed system chamber. The vapor adsorption onto the MCL surface results in a rapid and measurable deflection of the MCL. No significant deflections of the uncoated MCL occurred when the different vapors were passed through into the microcantilever chamber. Linear concentration–deflection responses were observed, with the highest sensitivity shown with methanol, followed by ethanol and then isopropanol. Density functional theory (DFT) quantum chemical calculations were conducted to estimate the electronic interaction energies (ΔIE) between the alcohol molecules and MMA and two different model tetrameric segments of PMMA. The computed ΔIEs were in the same order as the experimentally observed order: methanol > ethanol > isopropanol

    Proposed Mechanism for Emodin as Agent for Methicillin Resistant Staphylococcus Aureus: In Vitro Testing and In Silico Study

    No full text
    In the search for a new anti-MRSA lead compound, emodin was identified as a good lead against methicillin-resistant Staphylococcus aureus (MRSA). Emodin serves as a new scaffold to design novel and effective anti-MRSA agents. Because rational drug discovery is limited by the knowledge of the drug target, &alpha;-hemolysin of Staphylococcus aureus was used in this study because it has an essential role in Staphylococcus infections and because emodin shares structural features with compounds that target this enzyme. In order to explore emodin&rsquo;s interactions with &alpha;-hemolysin, all possible ligand binding pockets were identified and investigated. Two ligand pockets were detected based on bound ligands and other reports. The third pocket was identified as a cryptic site after molecular dynamics (MD) simulations. MD simulations were conducted for emodin in each pocket to identify the most plausible ligand site and to aid in the design of potent anti-MRSA agents. Binding of emodin to site 1 was most stable (RMSD changes within 1 &Aring;), while in site 2, the binding pose of emodin fluctuated, and it left after 20 ns. In site 3, it was stable during the first 50 ns, and then it started to move out of the binding site. Site 1 is a possible ligand binding pocket, and this study sheds more light on interaction types, binding mode, and key amino acids involved in ligand binding essential for better lead design. Emodin showed an IC50 value of 6.3 &mu;g/mL, while 1, 6, and 8 triacetyl emodin showed no activity against MRSA. A molecular modeling study was pursued to better understand effective binding requirements for a lead

    Conjugation of testosterone modifies the interaction of mono-functional cationic platinum(II) complexes with DNA, causing significant alterations to the DNA helix

    No full text
    Previously a range of androgen conjugates with non-conventional platinum(II) complexes have been synthesised with the aim of enhancing cellular delivery, and which have shown increased cytotoxic activity compared with non-steroidal compounds (M. J. Hannon et al., Dalton Trans., 2010, DOI: 10.1039/c0dt00838a). To further study this, the complexes have been assessed for their ability to bind to and alter the structure of DNA. All platinum(II) complexes studied herein bind to model nucleo-bases and DNA, but to our surprise, testosterone-based complexes caused the DNA helix to undergo significant unwinding and bending, whereas non-steroidal control complexes caused minimal structural alterations. These effects are similar to those cisplatin induces on DNA structure despite the fact that these compounds produce a monofunctional lesion. This ability attributed to interactions between the DNA helix and bulky steroidal skeleton of testosterone, coupled with the enhanced cellular delivery induced by the steroid make the steroid approach an exciting way to explore non-conventional platinum drug delivery

    Burkholderia cenocepacia Type VI Secretion System Mediates Escape of Type II Secreted Proteins into the Cytoplasm of Infected Macrophages

    Get PDF
    <div><p><em>Burkholderia cenocepacia</em> is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with <em>B. cenocepacia</em> employ the NLRP3 inflammasome to induce IL-1β secretion and pyroptosis. Moreover, IL-1β secretion by <em>B. cenocepacia-</em>infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1β secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.</p> </div
    corecore