18 research outputs found

    Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    Get PDF
    Background Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor the sensitive fraction of the commensal flora. Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli. Results Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used. Conclusion Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes

    Pharmacodynamic modelling of in vitro activity of tetracycline against a representative, naturally occurring population of porcine Escherichia coli

    Get PDF
    Background The complex relationship between drug concentrations and bacterial growth rates require not only the minimum inhibitory concentration but also other parameters to capture the dynamic nature of the relationship. To analyse this relationship between tetracycline concentration and growth of Escherichia coli representative of those found in the Danish pig population, we compared the growth of 50 randomly selected strains. The observed net growth rates were used to describe the in vitro pharmacodynamic relationship between drug concentration and net growth rate based on E max model with three parameters: maximum net growth rate (α max ); concentration for a half-maximal response (E max ); and the Hill coefficient (γ). Results The net growth rate in the absence of antibiotic did not differ between susceptible and resistant isolates (P = 0.97). The net growth rate decreased with increasing tetracycline concentrations, and this decline was greater in susceptible strains than resistant strains. The lag phase, defined as the time needed for the strain to reach an OD 600 value of 0.01, increased exponentially with increasing tetracycline concentration. The pharmacodynamic parameters confirmed that the αmax between susceptible and resistant strains in the absence of a drug was not different. EC 50 increased linearly with MIC on a log–log scale, and γ was different between susceptible and resistant strains. Conclusions The in vitro model parameters described the inhibition effect of tetracycline on E. coli when strains were exposed to a wide range of tetracycline concentrations. These parameters, along with in vivo pharmacokinetic data, may be useful in mathematical models to predict in vivo competitive growth of many different strains and for development of optimal dosing regimens for preventing selection of resistance

    Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent antimicrobial resistance in pigs

    Get PDF
    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing the resistance levels. The number of competing strains had no apparent effect on the resistance level during treatment, but possession of fewer strains reduced the time to reach equilibrium after the end of treatment. To sum up, epidemiological parameters may have more profound influence on growth dynamics than dosing regimens and should be considered when designing improved treatment protocols

    Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment

    Get PDF
    Background: This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains in the intestine of nursery pigs. It also examined the dynamics of the composition of bacterial strains during and after the treatment. The growth responses of strains to ampicillin concentrations were determined using in vitro growth curves. Using these results as input data, growth predictions were generated using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. Results: In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most susceptible strains were more affected by increasing concentrations of antibiotics that the rest of the strains. The modeling revealed that short treatment duration resulted in lower levels of resistance and that dosing frequency did not substantially influence the growth of resistant strains. Resistance levels were found to be sensitive to the number of competing strains, and this effect was enhanced by longer duration of treatment. High excretion of bacteria from the intestine favored resistant strains over sensitive strains, but at the same time it resulted in a faster return to pre-treatment levels after the treatment ended. When the duration of high excretion was set to be limited to the treatment time (i.e. the treatment was assumed to result in a cure of diarrhea) resistant strains required longer time to reach the previous level. Conclusion: No fitness cost was found to be associated with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic, and could be used for prediction of the effect of treatment with other drugs and other administration routes for effect on resistance development in the intestine of pigs

    Assessment of Antimicrobial Treatment Strategies in Pig Production Using Mathematical Models

    No full text

    Fuzzy Logic and Approximate Reasoning

    No full text
    Two of the most exemplary capabilities of the human mind are the capability of using perceptions (human knowledge) in purposeful ways and the capability of approximating perceptions by statements in natural language. Understanding these capabilities and emulating them by linguistic approximation is the crux of our thesis. There has been a rapid growth in the number and variety of applications of fuzzy logic. In a narrow sense, fuzzy logic is a logical system which is an extension of multivalued logic and is intended to serve as logic of approximate reasoning. But in a wider sense, fuzzy logic is more or less synonymous with the theory of fuzzy sets. In classical logic the propositional value of a statement is either true (1) or false (0) but in lukasiewicz logic we gave value as a truthfulness to a certain proposition between [0, 1]. As a generalization of many valued logic, fuzzy logic was established in order to deal with those fuzzy propositions and to underlie approximate reasoning. We have calculated the fuzzy truth values and compare the results of different operations (conjunction, disjunction etc) with the approach to Baldwin's (1979) and with the help of modus ponens law. There are many chemical reactions that are very sensitive and a little change in temperature and particle size can create serious problems. We have developed the idea of approximate reasoning and fuzzy logic to find the approximate value of reaction rate with the given conditions by means of the extended modus ponens law. The methodology is very simple and can be applied to several other chemical reactions in the similar way by connecting AND and OR operations. The result Q' can be found by the fuzzy relation equation Q' = P' o R where ``o" is the max-min composition of P' and R operation. Result Q' for the certain situation is in the form of fuzzy set, in which we choose the value with maximum membership degree
    corecore