19 research outputs found

    α4β2∗ nicotinic receptors stimulate GABA release onto fast-spiking cells in layer V of mouse prefrontal (Fr2) cortex

    Get PDF
    AbstractNicotinic acetylcholine receptors (nAChRs) produce widespread and complex effects on neocortex excitability. We studied how heteromeric nAChRs regulate inhibitory post-synaptic currents (IPSCs), in fast-spiking (FS) layer V neurons of the mouse frontal area 2 (Fr2). In the presence of blockers of ionotropic glutamate receptors, tonic application of 10μM nicotine augmented the spontaneous IPSC frequency, with minor alterations of amplitudes and kinetics. These effects were studied since the 3rd postnatal week, and persisted throughout the first two months of postnatal life. The action of nicotine was blocked by 1μM dihydro-β-erythroidine (DHβE; specific for α4∗ nAChRs), but not 10nM methyllycaconitine (MLA; specific for α7∗ nAChRs). It was mimicked by 10nM 5-iodo-3-[2(S)-azetidinylmethoxy]pyridine (5-IA; which activates β2∗ nAChRs). Similar results were obtained on miniature IPSCs (mIPSCs). Moreover, during the first five postnatal weeks, approximately 50% of FS cells displayed DHβE-sensitive whole-cell nicotinic currents. This percentage decreased to ∼5% in mice older than P45. By confocal microscopy, the α4 nAChR subunit was immunocytochemically identified on interneurons expressing either parvalbumin (PV), which mainly labels FS cells, or somatostatin (SOM), which labels the other major interneuron population in layer V. GABAergic terminals expressing α4 were observed to be juxtaposed to PV-positive (PV+) cells. A fraction of these terminals displayed PV immunoreactivity. We conclude that α4β2∗ nAChRs can produce sustained regulation of FS cells in Fr2 layer V. The effect presents a presynaptic component, whereas the somatic regulation decreases with age. These mechanisms may contribute to the nAChR-dependent stimulation of excitability during cognitive tasks as well as to the hyperexcitability caused by hyperfunctional heteromeric nAChRs in sleep-related epilepsy

    Atypical “seizure-like” activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons

    Get PDF
    We show here that a mild sterile inflammation induced by the endotoxin lipopolysaccharide (LPS), in a neuron/astrocyte/microglial cortical network, modulates neuronal excitability and can initiate long-duration burst events resembling epileptiform seizures, a recognized feature of various central nervous neurodegenerative, neurological and acute systemic diseases associated with neuroinflammation. To study this action, we simultaneously analyzed the reverberating bursting activity of a hundred neurons by using in vitro multi-electrode array (MEA) methods. ~5 hours after LPS application, we observed a net increase in the average number of spikes elicited in engaged cells and within each burst, but no changes neither in spike waveforms nor in burst rate. This effect was characterized by a slow, two-fold exponential increase of the burst duration and the appearance of rarely occurring long-burst events that were never seen during control recordings. These changes and the time-course of microglia-released proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), were blocked by pre-treatment with 50 nM minocycline, an established anti-inflammatory agent which was inactive when applied alone. Assay experiments also revealed that application of 60 pM exogenous TNF-α after 12-15 h, produced non-washable changes of neuronal excitability, completely different from those induced by LPS, suggesting that TNF-α release alone was not responsible for our observed findings. Our results indicate that the link between neuroinflammation and hyperexcitability can be unveiled by studying the long-term activity of in vitro neuronal/astrocyte/microglial networks

    Orchestration of “Presto” and “Largo” Synchrony in Up-Down Activity of Cortical Networks

    Get PDF
    It has been demonstrated using single-cell and multiunit electrophysiology in layer III entorhinal cortex and disinhibited hippocampal CA3 slices that the balancing of the up-down activity is characterized by both GABAA and GABAB mechanisms. Here we report novel results obtained using multi-electrode array (60 electrodes) simultaneous recordings from reverberating postnatal neocortical networks containing 19.2 ± 1.4% GABAergic neurons, typical of intact tissue. We observed that in each spontaneous active-state the total number of spikes in identified clusters of excitatory and inhibitory neurons is almost equal, thus suggesting a balanced average activity. Interestingly, in the active-state, the early phase is sustained by only 10% of the total spikes and the firing rate follows a sigmoidal regenerative mode up to peak at 35 ms with the number of excitatory spikes greater than inhibitory, therefore indicating an early unbalance. Concentration-response pharmacology of up- and down-state lifetimes in clusters of excitatory (n = 1067) and inhibitory (n = 305) cells suggests that, besides the GABAA and GABAB mechanisms, others such as GAT-1-mediated uptake, Ih, INaP and IM ion channel activity, robustly govern both up- and down-activity. Some drugs resulted to affect up- and/or down-states with different IC50s, providing evidence that various mechanisms are involved. These results should reinforce not only the role of synchrony in CNS networks, but also the recognized analogies between the Hodgkin–Huxley action potential and the population bursts as basic mechanisms for originating membrane excitability and CNS network synchronization, respectively

    Parvalbumin and GABA in the developing somatosensory thalamus of the rat: an immunocytochemical ultrastructural correlation

    No full text
    The calcium binding protein parvalbumin (PV) is widely distributed in the mammalian nervous system and its relationship with GABAergic neurons differs within thalamic nuclei and animal species. In the rat somatosensory thalamus PV immunoreactive (ir) neurons were found only in the GABAergic reticular thalamic nucleus (RT), while a dense PVir neuropil is present in the ventrobasal complex (VB). In this study the distribution and relationship of PV and GABA were investigated in RT and VB during postnatal development at electron microscopic level. The pre-embedding immunoperoxidase detection of PV was combined with the post-embedding immunogold localization of GABA. In RT, at all developmental ages, neuronal cell bodies, dendrites and rare axonal terminals were both PVir and GABAir. In VB during the first postnatal week several small vesicle-containing profiles were double-labelled and some of them were identifiable as synaptic terminals. From postnatal day 7 (P7) to P9 the medial part of VB was more intensely PVir than the lateral one and some differences in the sequence of maturation of PVir terminals were noted between these two VB subdivisions. Single-labelled PVir profiles were first observed at P8, whereas single-labelled PVir terminals appeared at P12 and at P15 they became more frequent and larger, showing the typical morphology of ascending afferents described in adult VB. These results demonstrate the late expression of PV and acquisition of adult morphology in ascending terminals of rat VB during postnatal development in comparison with the innervation arising from the GABAergic RT

    Nicotinic acetylcholine receptors and epilepsy

    No full text
    Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy

    The Association between α-Synuclein and α-Tubulin in Brain Synapses

    No full text
    α-synuclein is a small protein that is mainly expressed in the synaptic terminals of nervous tissue. Although its implication in neurodegeneration is well established, the physiological role of α-synuclein remains elusive. Given its involvement in the modulation of synaptic transmission and the emerging role of microtubules at the synapse, the current study aimed at investigating whether α-synuclein becomes involved with this cytoskeletal component at the presynapse. We first analyzed the expression of α-synuclein and its colocalization with α-tubulin in murine brain. Differences were found between cortical and striatal/midbrain areas, with substantia nigra pars compacta and corpus striatum showing the lowest levels of colocalization. Using a proximity ligation assay, we revealed the direct interaction of α-synuclein with α-tubulin in murine and in human brain. Finally, the previously unexplored interaction of the two proteins in vivo at the synapse was disclosed in murine striatal presynaptic boutons through multiple approaches, from confocal spinning disk to electron microscopy. Collectively, our data strongly suggest that the association with tubulin/microtubules might actually be an important physiological function for α-synuclein in the synapse, thus suggesting its potential role in a neuropathological context
    corecore