3 research outputs found

    A comprehensive review on medical diagnosis using machine learning

    Get PDF
    The unavailability of sufficient information for proper diagnosis, incomplete or miscommunication between patient and the clinician, or among the healthcare professionals, delay or incorrect diagnosis, the fatigue of clinician, or even the high diagnostic complexity in limited time can lead to diagnostic errors. Diagnostic errors have adverse effects on the treatment of a patient. Unnecessary treatments increase the medical bills and deteriorate the health of a patient. Such diagnostic errors that harm the patient in various ways could be minimized using machine learning. Machine learning algorithms could be used to diagnose various diseases with high accuracy. The use of machine learning could assist the doctors in making decisions on time, and could also be used as a second opinion or supporting tool. This study aims to provide a comprehensive review of research articles published from the year 2015 to mid of the year 2020 that have used machine learning for diagnosis of various diseases. We present the various machine learning algorithms used over the years to diagnose various diseases. The results of this study show the distribution of machine learningmethods by medical disciplines. Based on our review, we present future research directions that could be used to conduct further research

    A secure and lightweight drones-access protocol for smart city surveillance

    Get PDF
    The rising popularity of ICT and the Internet has enabled Unmanned Aerial Vehicle (UAV) to offer advantageous assistance to Vehicular Ad-hoc Network (VANET), realizing a relay node's role among the disconnected segments in the road. In this scenario, the communication is done between Vehicles to UAVs (V2U), subsequently transforming into a UAV-assisted VANET. UAV-assisted VANET allows users to access real-time data, especially the monitoring data in smart cities using current mobile networks. Nevertheless, due to the open nature of communication infrastructure, the high mobility of vehicles along with the security and privacy constraints are the significant concerns of UAV-assisted VANET. In these scenarios, Deep Learning Algorithms (DLA) could play an effective role in the security, privacy, and routing issues of UAV-assisted VANET. Keeping this in mind, we have devised a DLA-based key-exchange protocol for UAV-assisted VANET. The proposed protocol extends the scalability and uses secure bitwise XOR operations, one-way hash functions, including user's biometric verification when users and drones are mutually authenticated. The proposed protocol can resist many well-known security attacks and provides formal and informal security under the Random Oracle Model (ROM). The security comparison shows that the proposed protocol outperforms the security performance in terms of running time cost and communication cost and has effective security features compared to other related protocols

    SDN-Assisted Safety Message Dissemination Framework for Vehicular Critical Energy Infrastructure

    No full text
    The proliferation of fifth-generation (5G) networks toward vehicle-to-everything (V2X) communication has paved the way for driverless autonomous vehicles (AVs) in vehicular critical energy infrastructures (CEI). Though technological advancements improve AVs, the safety-critical messages (SCMs) still play a vital role in reducing crashes, preventing injuries, and saving lives. AVs' high speed and complex network topology challenge disseminating SCMs with a highly successful delivery ratio and extremely low latency. Furthermore, the typical SCM dissemination schemes cause channel congestion and minimize the delivery ratio, making the systems incompatible with the AVs. Therefore, in this article, a software-defined-networking-assisted continuous clustering approach called migrating consignment region (MiCR) based on the federated K-means algorithm is proposed for disseminating SCMs to the AVs via 5G V2X communication. Unlike other methods that create clusters for every instance of SCM dissemination, MiCR continuously holds moving clusters for disseminating SCMs to AVs with ultrahigh reliability and low latency. The proposed MiCR approach has been simulated under real-time highway road maps and compared with other methods. The simulation results prove the superiority of MiCR in terms of network overload, SCM delivery ratio, latency, dissemination efficiency, and collision rate compared with the existing methods
    corecore