6 research outputs found

    Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes.

    No full text
    BackgroundHuman amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts.MethodsSeven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis.ResultsN-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P ConclusionsThe presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect

    A nitrogen factor for European pike-perch (Sander lucioperca), northern pike (Esox lucius), and sheatfish (Silurus glanis) fillets

    No full text
    Measures for consumer protection against food adulteration and misleading labeling are integrated into EU legislation, including methods for detection of misleading practices. Verification of meat content is available for marine products but not for freshwater fish because of the lack of standard nitrogen factors. The aim of this study was to establish nitrogen factors for European pike-perch Sander lucioperca (Linnaeus, 1758), northern pike Esox lucius Linnaeus, 1758, and sheatfish Silurus glanis Linnaeus, 1758. The study involved analysis of 808 fillet samples obtained in spring (March–April) and autumn (October–November) harvest seasons, 2018–2019, from seven Czech Republic fish rearing facilities. Samples with and without skin were analyzed for nitrogen content, dry matter, protein, ash, and fat according to established ISO methods. The recommended nitrogen factor for European pike-perch with the skin is 3.28 ± 0.09 and without the skin is 3.21 ± 0.09; for northern pike with the skin is 3.18 ± 0.09 and without skin is 3.15 ± 0.09; and for sheatfish with skin is 2.73 ± 0.13 and without skin is 2.75 ± 0.12. The established nitrogen factors will enable analysis of meat content to ensure that consumers are purchasing correctly described and labeled fish products

    Quantification of Analgesic and Anti-Inflammatory Lipid Mediators in Long-Term Cryopreserved and Freeze-Dried Preserved Human Amniotic Membrane

    No full text
    The aim of this study was to compare concentrations of endogenous N-acylethanolamine (NAE) lipid mediators—palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and anandamide (AEA)—in fresh, decontaminated, cryopreserved, and freeze-dried amniotic membrane (AM) allografts, thereby determining whether AM’s analgesic and anti-inflammatory efficiency related to NAEs persists during storage. The concentrations of NAEs were measured using ultra-high-performance liquid chromatography–tandem mass spectrometry. Indirect fluorescent immunohistochemistry was used to detect the PEA PPAR-α receptor. The concentrations of PEA, OEA, and AEA were significantly higher after decontamination. A significant decrease was found in cryopreserved AM compared to decontaminated tissue for PEA but not for OEA and AEA. However, significantly higher values for all NAEs were detected in cryopreserved samples compared to fresh tissue before decontamination. The freeze-dried AM had similar values to decontaminated AM with no statistically significant difference. The nuclear staining of the PPAR-α receptor was clearly visible in all specimens. The stability of NAEs in AM after cryopreservation was demonstrated under tissue bank storage conditions. However, a significant decrease, but still higher concentration of PEA compared to fresh not decontaminated tissue, was found in cryopreserved, but not freeze-dried, AM. Results indicate that NAEs persist during storage in levels sufficient for the analgesic and anti-inflammatory effects. This means that cryopreserved AM allografts released for transplant purposes before the expected expiration (usually 3–5 years) will still show a strong analgesic effect. The same situation was confirmed for AM lyophilized after one year of storage. This work thus contributed to the clarification of the analgesic effect of NAEs in AM allografts

    Outcome of Application of Cryopreserved Amniotic Membrane Grafts in the Treatment of Chronic Nonhealing Wounds of Different Origins in Polymorbid Patients: A Prospective Multicenter Study

    No full text
    To compare the therapeutic efficacy of cryopreserved amniotic membrane (AM) grafts and standard of care (SOC) in treating nonhealing wounds (NHW) through a prospective multicenter clinical trial, 42 patients (76% polymorbid) with 54 nonhealing wounds of various etiologies (mainly venous) and an average baseline size of 20 cm2 were included. All patients were treated for at least 6 weeks in the center before they were involved in the study. In the SOC group, 29 patients (36 wounds) were treated. If the wound healed less than 20% of the baseline size after 6 weeks, the patient was transferred to the AM group (35 patients, 43 wounds). Weekly visits included an assessment of the patient’s condition, photo documentation, wound debridement, and dressing. Quality of life and the pain degree were subjectively reported by patients. After SOC, 7 wounds were healed completely, 1 defect partially, and 28 defects remained unhealed. AM application led to the complete closure of 24 wounds, partial healing occurred in 10, and 9 remained unhealed. The degree of pain and the quality of life improved significantly in all patients after AM application. This study demonstrates the effectiveness of cryopreserved AM grafts in the healing of NHW of polymorbid patients and associated pain reduction
    corecore