13 research outputs found

    Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells.

    Get PDF
    A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 μm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells. © 2018 Joseph et al

    IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer

    Get PDF
    Contact sites of endoplasmic reticulum (ER) and mitochondria locally convey calcium signals between the IP3 receptors (IP3R) and the mitochondrial calcium uniporter, and are central to cell survival. It remains unclear whether IP3Rs also have a structural role in contact formation and whether the different IP3R isoforms have redundant functions. Using an IP3R-deficient cell model rescued with each of the three IP3R isoforms and an array of super-resolution and ultrastructural approaches we demonstrate that IP3Rs are required for maintaining ER-mitochondrial contacts. This role is independent of calcium fluxes. We also show that, while each isoform can support contacts, type 2 IP3R is the most effective in delivering calcium to the mitochondria. Thus, these studies reveal a non-canonical, structural role for the IP3Rs and direct attention towards the type 2 IP3R that was previously neglected in the context of ER-mitochondrial calcium signaling

    Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferationâ–¿

    No full text
    Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is recruited by nuclear receptor TLX, an essential neural stem cell regulator, to the promoters of TLX target genes to repress the expression of these genes, which are known regulators of cell proliferation. The importance of LSD1 function in neural stem cells was further supported by the observation that intracranial viral transduction of the LSD1 small interfering RNA (siRNA) or intraperitoneal injection of the LSD1 inhibitors pargyline and tranylcypromine led to dramatically reduced neural progenitor proliferation in the hippocampal dentate gyri of wild-type adult mouse brains. However, knockout of TLX expression abolished the inhibitory effect of pargyline and tranylcypromine on neural progenitor proliferation, suggesting that TLX is critical for the LSD1 inhibitor effect. These findings revealed a novel role for LSD1 in neural stem cell proliferation and uncovered a mechanism for neural stem cell proliferation through recruitment of LSD1 to modulate TLX activity

    DPB162-AE, an inhibitor of store-operated Ca2+ entry, can deplete the endoplasmic reticulum Ca2+ store

    No full text
    Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.publisher: Elsevier articletitle: DPB162-AE, an inhibitor of store-operated Ca2+ entry, can deplete the endoplasmic reticulum Ca2+ store journaltitle: Cell Calcium articlelink: http://dx.doi.org/10.1016/j.ceca.2017.01.015 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.status: publishe

    DPB162-AE, an inhibitor of store-operated Ca2+ entry, can deplete the endoplasmic reticulum Ca2+ store

    No full text
    Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition
    corecore