116 research outputs found
Genome sequence of Mesorhizobium mediterraneum strain R31, a nitrogen-fixing rhizobium used as an inoculant for chickpea in Argentina
Here, we report the complete genome sequence of Mesorhizobium mediterraneum R31, a rhizobial strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of 7.25 Mb, distributed into four circular replicons: a chromosome of 6.72 Mbp and three plasmids of 0.29, 0.17, and 0.07 Mbp.This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), PID2020-113207GBI00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe,” P20_0047, funded by the Junta de Andalucía PAIDI/FEDER/EU; and the Biotechnology and Biosciences Research Council (BBSRC). We thank OGC at the Wellcome Center for Human Genetics for the sequencing data and BMRC for processing (supported by Wellcome Trust Core Award grant 203141/Z/16/Z and the NIHR Oxford BRC).M INCyT | Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) PICT-2018-01727 Pablo Bogin
Complete genome sequence of Mesorhizobium ciceri strain R30, a Rhizobium used as a commercial inoculant for Chickpea in Argentina
We report the complete genome sequence of Mesorhizobium ciceri strain R30, a rhizobium strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of almost 7 Mb, distributed into two circular replicons: a chromosome of 6.49 Mb and a plasmid of 0.46 Mb.This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PID2020-113207GBI00 funded by MCIN/AEI/10.13039/501100011033); by “ERDF: A Way of Making Europe” (P20_0047), funded by the Junta de Andalucía PAIDI/FEDER/EU; and by the Biotechnology and Biosciences Research Council (BBSRC). We are grateful to Plateforme de Microbiologie Mutualisée (P2M) and the Pasteur International Bioresources network (PIBnet) and to Institut Pasteur Paris for providing the resources for Illumina sequencing.
We thank O.G.C. at the Wellcome Centre for Human Genetics for the sequencing data and B.M.R.C. for processing (supported by Wellcome Trust Core Award grant 203141/Z/16/Z and the NIHR Oxford BRC). We are also grateful to Vincent Enouf from Unité de Génétique Moléculaire des Virus à ARN-UMR3569 CNRS, Université de Paris, Centre National de Référence Virus des Infections Respiratoires (dont la grippe) and to F. Sgarlatta for proofreading the manuscript
Biological and structural characterization of theMycobacterium smegmatis nitroreductase NfnB, and its rolein benzothiazinone resistance
Tuberculosis is still a leading cause of death in developing
countries, for which there is an urgent need
for new pharmacological agents. The synthesis of
the novel antimycobacterial drug class of benzothiazinones
(BTZs) and the identification of their
cellular target as DprE1 (Rv3790), a component of
the decaprenylphosphoryl-b-D-ribose 2'-epimerase
complex, have been reported recently. Here, we
describe the identification and characterization of a
novel resistance mechanism to BTZ in Mycobacterium
smegmatis. The overexpression of the nitroreductase
NfnB leads to the inactivation of the drug by
reduction of a critical nitro-group to an amino-group.
The direct involvement of NfnB in the inactivation of
the lead compound BTZ043 was demonstrated by
enzymology, microbiological assays and gene knockout
experiments. We also report the crystal structure
of NfnB in complex with the essential cofactor flavin
mononucleotide, and show that a common amino
acid stretch between NfnB and DprE1 is likely to be
essential for the interaction with BTZ. We performed
docking analysis of NfnB-BTZ in order to understand
their interaction and the mechanism of
nitroreduction. Although Mycobacterium tuberculosis
seems to lack nitroreductases able to inactivate
these drugs, our findings are valuable for the design
of new BTZ molecules, which may be more effective
in vivo
A streamlined, automated protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A using ÄKTAxpress™
We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors
- …