22 research outputs found

    Encephalitis, Ontario, Canada, 2002–2013

    No full text
    Encephalitis, a brain inflammation leading to severe illness and often death, is caused by >100 pathogens. To assess the incidence and trends of encephalitis in Ontario, Canada, we obtained data on 6,463 Ontario encephalitis hospitalizations from the hospital Discharge Abstract Database for April 2002–December 2013 and analyzed these data using multiple negative binomial regression. The estimated crude incidence of all-cause encephalitis in Ontario was ≈4.3 cases/100,000 persons/year. Incidence rates for infants 65 years were 3.9 and 3.0 times that of adults 20–44 years of age, respectively. Incidence peaks during August–September in 2002 and 2012 resulted primarily from encephalitis of unknown cause and viral encephalitis. Encephalitis occurred more frequently in older age groups and less frequently in women in Ontario when compared to England, but despite differences in population, vector-borne diseases, climate, and geography, the epidemiology was overall remarkably similar in the two regions

    Effects of Response to 2014–2015 Ebola Outbreak on Deaths from Malaria, HIV/AIDS, and Tuberculosis, West Africa

    No full text
    Response to the 2014–2015 Ebola outbreak in West Africa overwhelmed the healthcare systems of Guinea, Liberia, and Sierra Leone, reducing access to health services for diagnosis and treatment for the major diseases that are endemic to the region: malaria, HIV/AIDS, and tuberculosis. To estimate the repercussions of the Ebola outbreak on the populations at risk for these diseases, we developed computational models for disease transmission and infection progression. We estimated that a 50% reduction in access to healthcare services during the Ebola outbreak exacerbated malaria, HIV/AIDS, and tuberculosis mortality rates by additional death counts of 6,269 (2,564–12,407) in Guinea; 1,535 (522–2,8780) in Liberia; and 2,819 (844–4,844) in Sierra Leone. The 2014–2015 Ebola outbreak was catastrophic in these countries, and its indirect impact of increasing the mortality rates of other diseases was also substantial

    Model structure.

    No full text
    <p>The flow diagram above illustrates each of the paths an individual in the model can take in the event of a Zika virus outbreak, given different probabilities at each node. The model includes all individuals in the six selected states considered at risk for Zika virus infection in the US.</p

    Productivity losses per state.

    No full text
    <p>Total productivity losses by state and attack rate. Illustrated here is the base case scenario (solid line) as well as the range from the more conservative to the less conservative scenario (shaded region).</p
    corecore