19 research outputs found

    The role of Wnt/β-catenin antagonists - sclerostin and DKK1 - in bone homeostasis and mechanotransduction

    Get PDF
    Promising avenues for improving bone mass and fracture resistance include loading-based exercise and agents modulating Wnt/β-catenin signalling. This thesis examines the intersection between these. Murine models of tibial loading and unloading, genetic knockout (KO) models of Wnt antagonists sclerostin and dickkopf-1/DKK1 (encoded by Sost and Dkk1 genes), and neutralising antibodies for sclerostin (Scl-Ab) were applied. Sost KO mice underwent unloading and compressive loading of the tibiae. Sclerostin was vital for the bone response to unloading yet not for loading. Rather, loading-induced anabolism was synergistically augmented in Sost KO mice. It was hypothesised that other Wnt antagonists, such as DKK1, may up-regulate following long-term sclerostin deficiency. Similarly, Dkk1 KO mice exhibited a synergistically augmented anabolic bone response to loading compared to wild type. However, compensation by sclerostin was doubtful as the primary cause for the augmented response with similar sclerostin expression seen in non-loaded tibiae of Dkk1 KO and wild type mice, and similar down-regulation following loading. Dkk1 KO mice treated with Scl-Ab resulted in additive increases in bone volume above either individual DKK1 or sclerostin deficiency. Prominent and synergistic effects were within cancellous bone. Immunohistochemical staining did not support the hypothesis that sclerostin up-regulates to compensate for long-term DKK1 deficiency. Finally, Scl-Ab was co-administered to mice undergoing tibial compressive loading, with additional anabolic increases seen above either monotherapy. RNA sequencing provided insight into mechanisms involved in the augmented response to loading with Scl-Ab use. This thesis supports future clinical use of antibodies targeting Wnt antagonists, whereby load/resistance exercise or dual-agents may increase the efficacy of Scl-Ab or DKK1-Ab therapy. This may have a critical impact for treatment of osteoporosis and other conditions of bone-loss

    Myogenic progenitors contribute to open but not closed fracture repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair.</p> <p>Methods</p> <p>We employed a <it>MyoD</it>-Cre<sup>+</sup>:Z/AP<sup>+ </sup>conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a <it>human alkaline phosphatase (hAP) </it>reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing.</p> <p>Results</p> <p>In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP<sup>+ </sup>cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP<sup>+ </sup>cells detected in the open fracture callus. At early stages of repair, many hAP<sup>+ </sup>cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP<sup>+ </sup>cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP<sup>+ </sup>staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors.</p> <p>Conclusions</p> <p>These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/9/136</url></p

    Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading

    No full text
    Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl- Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy. To address this, we carried out a 2 week study of tibial cyclic compressive loading on C57Bl/6 mice treated with vehicle or 100mg/kg/week Scl-Ab. Increases in bone volume, density, and dynamic bone formation were seen with loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibiae isolated from mice from all four experimental groups. Major alterations in Wnt/β-catenin gene expression were seen with tibial loading, however not with Scl-Ab treatment alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or loading treatment alone. The Wnt/β-catenin and Rho GTPase pathways were implicated within bone mechanotransduction, and support the concept that bone mechanotransduction is likely to encompass a number of interconnected signaling pathways

    Osteoclasts are redundant during MMP-driven endochondral fracture repair.

    No full text
    As new insights into the complexities of endochondral fracture repair emerge, the role of osteoclast activity remains ambiguous. With numerous anti-resorptive agents available to treat bone disease, understanding their impact on bone repair is vital. Further, in light of recent work suggesting osteoclast activity is redundant during early endochondral fracture union, we hypothesize a pivotal role of MMP secreting cells in driving this process. We examined a number of anti-resorptive treatments to either block osteoclast activity, including the potent bisphosphonates zoledronic acid (ZA) and clodronate (CLOD), which work via differing mechanisms, or antagonize osteoclastogenesis with recombinant OPG (HuOPG-Fc), comparing these directly to an inhibitor of matrix metalloproteinase (MMP) activity (MMI270). Endochondral ossification to union occurred normally in all anti-resorptive groups. In contrast, MMP inhibition greatly impaired endochondral union, significantly delaying cartilage callus removal. MMP inhibition also produced smaller, denser hard calluses. Hard callus remodeling was, as expected, delayed with ZA, CLOD and OPG treatment at 4 and 6 weeks, resulting in larger more mineralized calluses at 6 weeks. As a result of reduced hard callus turnover, bone formation was reduced with anti-resorptive agents at these time points. These results confirm that osteoclast activity is redundant to the achievement of endochondral fracture union. Alternatively, MMP secretion by invading cells is obligatory to endochondral union. This study provides new insight into cellular contributions to bone repair and may abate concerns regarding anti-resorptive therapies impeding fracture union

    Intermittent PTH((1-34)) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures.

    No full text
    Intermittent Parathyroid Hormone (PTH)((1-34)) has an established place in osteoporosis treatment, but also shows promising results in models of bone repair. Previous studies have been dominated by closed fracture models, where union is certain. One of the major clinical needs for anabolic therapies is the treatment of open and high energy fractures at risk of non-union. In the present study we therefore compared PTH((1-34)) treatment in models of both open and closed fractures. 108 male Wistar rats were randomly assigned to undergo standardized closed fractures or open osteotomies with periosteal stripping. 27 rats in each group were treated s.c. with PTH((1-34)) at a dose of 50 mug/kg 5 days a week, the other 27 receiving saline. Specimens were harvested at 6 weeks for mechanical testing (n=17) or histological analysis (n=10). In closed fractures, union by any definition was 100% in both PTH((1-34)) and saline groups at 6 weeks. In open fractures, the union rate was significantly lower (p<0.05), regardless of treatment. In open fractures the mechanically defined union rate was 10/16 (63%) in saline and 11/17 (65%) in PTH((1-34)) treated fractures. By histology, the union rate was 3/9 (33%) with saline and 5/10 (50%) with PTH((1-34)). Radiological union was seen in 13/25 (52%) for saline and 15/26 (58%) with PTH((1-34)). Open fractures were associated with decreases in bone mineral content (BMC) and volumetric bone mineral density (vBMD) on quantitative computerized tomography (QCT) analysis compared to closed fractures. PTH((1-34)) treatment in both models led to significant increases in callus BMC and volume as well as trabecular bone volume/total volume (BV/TV), as assessed histologically (p<0.01). In closed fractures, PTH((1-34)) had a robust effect on callus size and strength, with a 60% increase in peak torque (p<0.05). In the open fractures that united and could be tested, PTH((1-34)) treatment also increased peak torque by 49% compared to saline (p<0.05). In conclusion, intermittent PTH((1-34)) produced significant increases in callus size and strength in closed fractures, but failed to increase the rate of union in an open fracture model. In the open fractures that did unite, a muted response to PTH was seen compared to closed fractures. Further research is required to determine if PTH((1-34)) is an appropriate anabolic treatment for open fractures

    Models of tibial fracture healing in normal and Nf1-deficient mice.

    No full text
    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial

    Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume

    No full text
    Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased expression of either results in increased bone formation and mass. As both affect the same signaling pathway, we aimed to elucidate the redundancy and/or compensation of sclerostin and DKK1. Weekly sclerostin antibody (Scl-Ab) was used to treat 9-week-old female Dkk1 KO (Dkk1-/-:Wnt3+/-) mice and compared to Scl-Ab-treated wild-type mice as well as vehicle-treated Dkk1 KO and wild-type animals. While Wnt3 heterozygote (Wnt3+/-) mice show no bone phenotype, Scl-Ab and vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 weeks for microCT, bone histomorphometry, anti-sclerostin immunohistochemistry, and biomechanical testing. Scl-Ab enhanced bone anabolism in all treatment groups, but with synergistic enhancement seen in the cancellous compartment of Dkk1 KO mice (bone volume + 55% Dkk1 KO p < 0.01; + 22% wild type p < 0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved strength across all genotypes; however, no enhancement was seen within Dkk1 KO mice. Dynamic bone labeling showed that Scl-Ab treatment was associated with increased bone formation, regardless of genotype. Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO mice, indicating that the increased Wnt signaling associated with DKK1 deficiency was not compensated by upregulation of sclerostin protein. These data suggest complex interactions between Wnt signaling factors in bone, but critically illustrate synergy between DKK1 deficiency and Scl-Ab treatment. These data support the application of dual-targeted therapeutics in the modulation of bone anabolism
    corecore