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Abstract 

Promising avenues for improving bone mass and fracture resistance include loading-based exercise 

and agents modulating Wnt/β-catenin signalling. This thesis examines the intersection between 

these. Murine models of tibial loading and unloading, genetic knockout (KO) models of Wnt 

antagonists sclerostin and dickkopf-1/DKK1 (encoded by Sost and Dkk1 genes), and neutralising 

antibodies for sclerostin (Scl-Ab) were applied. 

Sost KO mice underwent unloading and compressive loading of the tibiae. Sclerostin was vital for 

the bone response to unloading yet not for loading. Rather, loading-induced anabolism was 

synergistically augmented in Sost KO mice. It was hypothesised that other Wnt antagonists, such 

as DKK1, may up-regulate following long-term sclerostin deficiency.  

Similarly, Dkk1 KO mice exhibited a synergistically augmented anabolic bone response to loading 

compared to wild type. However, compensation by sclerostin was doubtful as the primary cause 

for the augmented response with similar sclerostin expression seen in non-loaded tibiae of Dkk1 

KO and wild type mice, and similar down-regulation following loading.  

Dkk1 KO mice treated with Scl-Ab resulted in additive increases in bone volume above either 

individual DKK1 or sclerostin deficiency. Prominent and synergistic effects were within 

cancellous bone. Immunohistochemical staining did not support the hypothesis that sclerostin up-

regulates to compensate for long-term DKK1 deficiency. 

Finally, Scl-Ab was co-administered to mice undergoing tibial compressive loading, with 

additional anabolic increases seen above either monotherapy. RNA sequencing provided insight 

into mechanisms involved in the augmented response to loading with Scl-Ab use. 

This thesis supports future clinical use of antibodies targeting Wnt antagonists, whereby 

load/resistance exercise or dual-agents may increase the efficacy of Scl-Ab or DKK1-Ab therapy. 

This may have a critical impact for treatment of osteoporosis and other conditions of bone-loss. 
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1.    Overview of the Skeletal System 

The skeletal system is vital to the human physique, providing a framework and structure for the 

body, whilst allowing movement, absorbing daily applied forces and protecting vital organs. The 

musculoskeletal system is comprised of bone and associated connective tissues. These connective 

tissues include muscles, ligaments, tendons, and cartilage, which join bones, dictate and constrain 

their movement, and provide comfort and cushioning between the bones. 

However, it is bone, with its unique hardness, rigidity, and shape that is the major component of 

the skeleton. Along with the physical mechanical function of bone, the mineral content and marrow 

cavity of bones also provide metabolic functionality to the body, storing essential ions such as 

calcium, and also housing the majority of the body’s pool of hematopoietic cells (1). Bone is 

primarily composed of mineral, organic matrix, cells and water (1). The mineral, which makes up 

65% of bone and is formed into crystals, is mainly impure calcium hydroxyapatite 

[Ca10(PO4)6(OH)2], with carbonate, magnesium, fluoride, citrate and strontium incorporated (1, 3). 

The organic matrix, also known as the osteoid, makes up 35% of bone and consists primarily of 

collagen, with some non-collagenous proteins incorporated, such as osteocalcin, osteopontin, 

osteonectin, bone sialoprotein, and TGF-β family members including bone morphogenetic proteins 

(BMPs) (1, 3). 

 

1.1.   Anatomy and physiology 

An adult skeleton has 213 bones (or 206 when the fused vertebrae within the sacrum and the 

coccyx are considered as one bone each) (4). Though there are four groups of bones classified by 

their basic structure: short, flat, long and irregular (4), the majority of this research will investigate 

the long bones and so the anatomy of these bones will follow.  

The long bones include the fibulae, tibiae, femora, ulnae, radii, humeri, metacarpals, metatarsals, 

phalanges, and clavicles (4). Under gross morphologic inspection, adult long bones are long in 

shape (Figure 1.1). The main central shaft of the bone, the  
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Figure 1.1: Diagram depicting the gross anatomical features of the long bone. Image from 

OpenStax College, 2013 (5). 
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diaphysis, is tubular in form (6). It is within this region that the medullary cavity is enclosed, which 

contains hematopoietic marrow and blood forming cells (6). At either end of the long bone are 

regions entitled the epiphysis. These ends meet other bones at the joint and so are covered by a 

thin layer of articular cartilage to aid cushioning and allow motion (1). The epiphysis and the 

diaphysis at either end of the bone are separated by an expanded region called the metaphysis. This 

region is broader than the tubular shaft of the diaphysis. Separating the metaphysis and the 

epiphysis in the immature skeleton is a cartilaginous region called the growth plate, or the physis, 

an essential region in the growth of long bones (1). The periosteum, a layer of vascularised 

connective tissue membrane, covers the majority of the bone. Excluded regions are where tendons 

and ligaments join the bone or where articular cartilage covers the bone at joints (1). A similar, but 

mostly cellular, membrane called the endosteum exists on the inner bone surface inside the 

medullary cavity. 

Bone tissue is categorised into two macroscopic structural types: cortical (or compact) bone and 

trabecular (or cancellous) bone (Figure 1.2). These comprise approximately 80% and 20% of the 

adult skeleton respectively (6). The structure, composition and material properties of the matrix is 

the same for cortical and trabecular bone, but cortical bone is more dense, and its compressive 

strength greater than that of trabecular bone (6). Trabecular bone is a framework of interconnected 

plates and rods and thus has approximately twenty times more surface area than cortical bone (1). 

In long bones, trabecular bone is found filling the broader epiphyses and metaphyses, which are 

surrounded by only a thin layer of cortical bone. This cortical bone thickens and decreases in 

diameter as it forms the tubular diaphysis. The distribution of these bone structures is an important 

aspect mechanically for long bones. The broader structure of trabecular bone, surrounded by a thin 

cortex at the metaphyses and epiphyses provides pliancy and absorbency in load bearing in 

compression, while the thick, dense cortical bone of the diaphysis resists torsion and bending to 

load (6).  

There are two microscopic structural types of bone existing in the skeleton; woven and lamellar 

bone. These relate to the organisation of collagen fibres. Woven bone is made up from coarse 

random interwoven collagen fibres with a random distribution of osteocytes, formed in early or 

ongoing repair scenarios (3). Lamellar bone, however, is highly organised and regular. It is built 

up of layers (lamellae), 3-7μm thick and comprised of a cross-hatching of fine fibres that run on 

the same plane (1). During embryonic bone growth it is the woven bone that is formed to make 
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the skeleton. This is then resorbed and replaced with the more mature lamellar bone so that, apart 

from a few exceptions, woven bone rarely exists in the human skeleton past 4 years of age outside 

of a repair setting or disease setting (e.g. Paget's disease) (6). 

 

 

Figure 1.2: Image depicting the structural differences and the general distribution of trabecular 

and cortical bone within the long bone. Image modified from Glimcher, 2006 (7). 

 

 

1.2.     Bone cell biology 

There are four major cells types involved in bone formation and remodelling. These are the bone-

forming osteoblasts, osteocytes and bone-lining cells, and the bone-resorbing osteoclasts. Bone 

cells are characterised based on function, location and morphology and derive from two lineages. 

Osteoblasts, osteocytes and bone-lining cells share a single lineage, but are at varying stages. They 

derive from local osteoprogenitor cells, which are pluripotent precursors that stem from 

mesenchymal stem cells (MSCs) (8). These MSCs are also responsible for cells involved in 



Chapter 1. Introduction 

6 
 

cartilage, muscle, fat and fibrosis (8). Osteoclasts originate from the hematopoietic stem-cell line 

and are at the end-stage of the monocyte lineage (8, 9). Osteoclast precursors differentiate and 

circulate in the marrow or blood (6). These osteoclast precursors can multiply and fuse to develop 

into the large, multinucleated osteoclasts (9). 

 

1.2.1. Osteoblasts 

Osteoblasts are essential in the process of bone formation. Active osteoblasts are found lining the 

bone surface, tightly packed in a row. They are distinct in their polyhedral, rounded-oblong shape 

(3, 6). Osteoblasts also have cytoplasmic processes which can extend through the osteoid to reach 

osteocytes (6). Initially, osteoblasts synthesise an organic matrix, the osteoid, to form the major 

structural element of bone (8). They are also involved in the organisation of the osteoid and aid in 

its mineralisation. Osteoblasts may reduce their activity whilst on the surface of the bone and 

become bone-lining cells. Alternatively they may become enveloped in bone matrix and 

differentiate into osteocytes (6). Thus the osteoblast, osteocytes and bone lining cells share a 

common lineage. The third fate for the osteoblast is to undergo apoptosis, which occurs in 

approximately 50-70% of osteoblasts (10). 

 

1.2.2. Bone-lining cells 

Bone-lining cells are found flattened and elongated upon resting bone surfaces (6). They have 

cytoplasmic processes that meet adjoining bone-lining cells, and also extend through the bone 

matrix to meet osteocytes (1). Bone-lining cells are able to become either osteoblasts or osteocytes, 

but are also thought to have their own regulatory function in this bone-lining state. They are known 

to be important in bone resorption and remodelling, with evidence that they can mediate 

enzymatic-driven removal of the osteoid lining on bone (6). The bone-lining cell enters a lacuna 

following the departure of the osteoclast, cleans the pit of remaining bone matrix, and deposits a 

protein cement line, including osteopontin, at the base of the pit followed by the deposition of 

collagen fibrils (11). This appears to be a requirement before osteoid deposition and bone 

formation by the osteoblast (11).  
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1.2.3. Osteocytes 

Osteocytes represent the most abundant bone cell type. They form from mature osteoblasts that 

are gradually embedded within type I collagen-rich osteoid during bone formation (12). They 

transition to pre-osteocytes or osteoid osteocytes, and later osteocytes as the osteoid mineralises 

(13). They sit within the bone matrix inside lacunae and are elliptical in shape (6). They 

characteristically have a system of long cytoplasmic processes which connect to other osteocytes, 

blood vessels and other cells at the bone surface, such as osteoblasts and bone lining cells (9). The 

processes sit within canaliculi, which are small canals that cut through the bone matrix (14). This 

composition forms the lacuna-canalicular network. At the connection points between osteocyte 

processes there are gap junctions, a specialised matrix with channels allowing direct movement of 

ions and small molecules between cells (8). This connection allows functional communication 

through the bone matrix.  

 

1.2.4. Osteoclasts 

Osteoclasts, are large, multinucleated cells responsible for bone resorption (9). Active osteoclasts 

are found on bone surfaces at sites of bone resorption. This can include the periosteal and endosteal 

surfaces, trabecular bone surfaces, and even Haversian canals (6). The active osteoclast has two 

plasma membrane sites important to the process of bone resorption. First, complex folding of the 

cytoplasmic membrane to form a ruffled border occurs at the site of bone resorption (6). Second, 

a microfilament-rich region of the membrane, the clear zone, surrounds the ruffled border to seal 

the bone for resorption (9). Resorption involves two processes: the dissolution of inorganic bone 

mineral and the enzymatic digestion of organic macromolecules (8). At the region of the ruffled 

border, proton-pumps within the osteoclast move to the membrane surface and pump H+ ions and 

proteolytic enzymes, including cathepsin K and matrix metalloproteinases (MMPs), into the sealed 

space at the bone surface. This creates an acidic environment and results in bone mineral 

degradation (6). Further to this, the osteoclast secretes acid and glycosidases to break down the 

organic matrix and is also able to phagocytise matrix fragments (6, 8).  

Osteoclasts are derived from the hematopoietic monocyte lineage. Osteoclastic differentiation is 

dependent on the presence of the receptor activator nuclear factor kappaβ ligand (RANKL) system 

and monocyte colony-stimulating factor (M-CSF, also known as CSF-1) (15-17). RANKL binding 
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to receptor activator nuclear factor-kappaβ (RANK) expressed by osteoclast precursors stimulates 

osteoclastogenesis (18, 19). A regulator of RANKL, OPG, is expressed by osteoblasts (20). It acts 

as a decoy RANK receptor and blocks RANK/RANKL interaction and subsequently prevents 

osteoclast differentiation. The movement of osteoclast precursors are controlled by 

chemoattractants (osteocalcin and collagen-1) deposited within the bone matrix (10). 

There is contention over the source of RANKL controlling osteoclast differentiation. Osteoblasts 

express RANKL and have traditionally believed to have a role in the differentiation of osteoclasts 

and osteoclast precursor recruitment to the cell surface (10). However it is osteocyte- and 

chondrocyte-derived RANKL which are essential for resorption matrix surrounding these cells 

(21). Both membrane-bound and soluble RANKL are produced and both may have roles in 

osteoclastogenesis (21).  

 

1.3. Bone formation and development 

Bone formation occurs not only during embryonic development, but also during skeletal growth, 

and furthermore throughout life to achieve maintenance and repair. Bone formation occurs through 

three distinct processes: endochondral ossification, intramembranous and appositional.  

 

(i) Endochondral ossification 

Endochondral ossification is the process of bone formation that requires cartilage as a template 

that is progressively replaced with ossified bone. Undifferentiated mesenchymal cells condense as 

a blastema and differentiate into chondrocytes, the cartilage forming cells. These cells, which 

secrete cartilaginous matrix, hypertrophy and mineralise, forming calcified matrix and the basis of 

the cartilage template (22, 23). Blood vessels are able to invade following some resorption of the 

cartilage matrix. This brings in new osteoprogenitors that are able to differentiate into osteoblasts 

and synthesize bone matrix on unresorbed mineralised cartilage surfaces (22, 24). This forms the 

primary spongiosa. This primitive bone is resorbed and replaced with secondary spongiosa, which 

has a mature lamellar structure. 

Endochondral ossification is involved in the embryonic development of the axial and appendicular 

skeleton, including the base of the skull, the pelvis and vertebral column, along with the long bones 
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(1, 24). Endochondral ossification continues until skeletal maturity in the growing bones at the 

physes and epiphyses at regions called the growth plate. It is also seen in fracture repair, 

particularly in the long bones (22). 

 

(ii) Intramembranous bone formation 

Intramembranous bone formation occurs without the need for cartilage, but rather through 

ossification of an osteoid or embryonic connective tissue. Bone forms instead through the 

recruitment of undifferentiated mesenchymal cells to a future site of bone formation. These cells 

form spicules and islands of organic matrix, containing osteoprogenitors, blood vessels and 

fibroblastic cells, which are able to mineralise (22). The osteoprogenitors also differentiate into 

osteoblasts which further create osteoid which is then mineralised (22). The woven bone which 

forms appears trabecular in nature due to the spicules of organic matrix originally formed. These 

undergo remodelling to define cortical and trabecular regions of lamellar bone. 

Intramembranous formation occurs embryonically in flat bones, such as the bones of the face, the 

vault of the skull, and parts of the mandible and clavicle. It is also seen in the adult in some 

fractures and in appositional sites (1, 22). 

 

(iii) Appositional bone formation  

Appositional bone formation involves osteoblasts lining up on existing bone to build up the bone 

layer by layer, through osteoid formation which is then mineralised (22). This process is involved 

alongside both intramembranous and endochondral ossification, where both form a primary 

spongiosa. Bone is covered with a cellular layer, the periosteum. Cells of the periosteum secrete 

osteoid, building up the bone with subsequent mineralisation (22). Appositional bone formation 

can also be seen within the adult bone in instances of bone widening and bone remodelling (22).  
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Figure 1.3. Embryonic long bone formation. Mesenchymal cells assemble and synthesise a 

cartilage template. Cells differentiate into chondrocytes at the diaphysis and a process of 

hypertrophy and apoptosis follows, along with cartilage matrix mineralisation. Blood vessels 

invade and osteogenic precursors arrive, differentiate to osteoblasts, and create bone at the 

diaphysis, the primary ossification centre. The growth plates are established at the ends of the bone 

and continual chondrocyte differentiation and cartilage conversion to bone allows for bone growth. 

The secondary ossification centres occur later in the epiphyses. Image from Zelzer and Olsen, 2003 

(25).  
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1.3.1. Embryonic bone formation 

During embryonic growth the axial and appendicular skeleton arise from different progenitor 

pools. The axial skeleton includes the formation of the skull, spine, sternum and ribs, whilst the 

appendicular component incorporates the extremities, including the long bones (24). Both 

intramembranous and endochondral ossification bone formation requires first the recruitment of a 

mesenchymal blastema during the foetal stage (1). Cells originate from either the neural crest, 

somites or lateral plate mesoderm (25), however most of the axial skeleton comes from the somites, 

with the neural crest mainly used for craniofacial development. 

In contrast, the appendicular skeleton, which includes all of the long bones, is formed from the 

cells of the lateral plate mesoderm. In brief, the cells assemble and this leads to the synthesis of a 

cartilage template; endochondral bone formation (Figure 1.3). Blood vessels invade the 

perichondrium around the site of the future diaphysis and it becomes the periosteum. Further at 

the central diaphysis, just below the bone collar, cells differentiate into chondrocytes. This leads 

to the process of chondrocyte hypertrophy, and apoptosis, along with cartilage matrix 

mineralisation.  

Osteogenic precursors arrive via the invading blood vessels, differentiate to osteoblasts, and create 

bone at this site of the diaphysis, the primary ossification centre. This establishes the growth plates 

at the ends of the bone and continual chondrocyte differentiation and cartilage conversion to bone 

allows for bone growth (24). Later in foetal development and early childhood secondary 

ossification sites appear at the cartilaginous epiphyses in a similar manner as the diaphysis. 

Cartilage remains at the growth plate until post-puberty and at the joint as hyaline articular 

cartilage throughout adulthood (24).  

 

1.3.2. Growth of the long bones 

Long bones continue to grow via the growth plate up to the end of puberty, when the growth plate 

is replaced by bone. The growth plate consists of four distinct zones, which are designed as a 

merging continuum (24). The reserve zone consists of randomly placed, spherical chondrocytes 

separated by a collagen II and proteoglycan rich matrix. Cells eventually become regularly 
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arranged into columns to form the proliferative zone, and appear flattened in shape. The 

appearance of flattened cells in columns is a result of the method of chondrocyte proliferation. 

Mitosis occurs perpendicular to the long bone axis, and daughter cells are flattened in shape and 

separated by cartilage matrix. Cells eventually begin enlarging at the prehypertrophic zone, and 

they further mature, hypertrophy (enlarge), and secrete a collagen X rich matrix at the hypertrophic 

zone. Eventually the glycogen stores of the chondrocytes deplete so much that the cells undergo 

apoptotic cell death. This results in empty lacunae separated by septae of cartilaginous matrix 

which become mineralised. Transverse septae remain unmineralized and are invaded by blood 

vessels, which bring along chondroclasts that remove the calcified cartilage. The mineralised 

longitudinal septae extend into the diaphysis, and osteoblasts use these as templates for bone 

formation to form the primary spongiosa (24). 

 

1.4.   Bone remodelling and homeostasis 

Following the initial formation of the skeleton, bones begin undergoing a process of modelling 

and remodelling to achieve optimal size, shape and design. During bone development, bone 

modelling occurs to alter the size, shape, architecture and strength of the bone by patterning and 

laying down new bone (22). This process is largely controlled by genetics and the mechanical 

environment. Once  a bone has developed bone remodelling occurs, where osteoblasts work in 

tandem with osteoclasts (22). This process of bone resorption and bone formation, also termed as 

bone turnover, are achieved by different cells yet are tightly coupled (see section 1.2). Remodelling 

is important in the adult skeleton as it enables repair of microdamage and is important in mineral 

metabolism (26). Further, it allows bone mass, size and shape to adapt to metabolic changes, as 

well as to changes to the mechanical loading of the skeleton (3, 22, 27). 

 

1.5.   Response of bone to the mechanical environment 

Julius Wolff, in 1892, was the first to suggest that the skeleton was designed to distribute applied 

loads and furthermore was able to adapt to such loads (28). A century later, Harold Frost proposed 

the mechanostat hypothesis (29). It was suggested that, based on the everyday activities upon the 

skeleton, there is a window of normal strain levels on bone. Bone homeostasis occurs at this strain 
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set-point. Any alteration to this strain set-point will result in changes to bone mass and architecture. 

This effect is through a process known as mechanotransduction, whereby physical forces elicit 

biochemical signals which induce cellular responses. 

Mechanical loading results in an increase in bone mass. This has been displayed in both clinical 

and experimental scenarios. Bed rest studies and long-term space flight have shown an absence of 

weight-bearing activity or disuse on the skeleton leads to a significant reduction in bone mass 

throughout the body (30-33). Localised bone loss has also been shown in a number of animal loss 

of function experiments following immobilisation of hind-limbs, a single limb, bone or even a part 

of a bone (34-36).  

A reduced loading state results in increased bone resorption. Studies looking at consistently active 

sporting players versus non-active controls have shown increases in bone mineral content and bone 

mineral density in the consistently used limbs (37-40). Furthermore, assessment of dominant 

versus non-dominant arms in tennis players has shown increases in bone volume and bone mineral 

content in the dominant (loaded) arm (41, 42). Animal models of limb loading have also shown 

the direct effects on bone volume, density and content (43-45).  

The osteoclast, the osteoblast, the osteocyte and the MSC are all mechanosensitive cells capable 

of interacting to regulate osteoclast and osteoblast recruitment, proliferation and differentiation 

(46). However, as osteocytes are located within the bone’s lacuna-canalicular network, the network 

connecting osteocytes, bone-lining cells, osteoblasts and hematopoietic stem cells, it seems that 

they are ideally placed to both receive the strain from the mechanical environment and transduce 

signal (47, 48). For this reason, it has long been assumed that osteocytes mediate the 

osteoblast/osteoclast response due to changes in physical activity or load. It is known that 

osteoclasts resorb in regions of osteocyte underloading, while osteoblasts are recruited in regions 

of osteocyte overloading (14, 49). Critically, osteocytes are required for signalling during bone 

unloading, with a mouse model with targeted osteocyte ablation preventing bone loss associated 

with unloading (50). Further, these mice did result in low bone mass and fragility during normal 

load conditions, suggesting the importance of osteocytes in maintaining bone mass.  

There are numerous mechanosensors capable of detecting the physical forces and mechanical 

alterations. These constructs and cellular products include the cytoskeleton, focal adhesions, 

primary cilia, integrins, extracellular matrix proteins, tethering elements, plasma membrane 
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structures, cadherins, ephrins, gap-junctions and ion channels (46, 51). These mechanisms are not 

likely to work alone in any given situation. However, within the osteocyte one of the major 

mechanisms in which load changes are sensed is thought to be through the changes in fluid flow 

through the canalicular network (14). The bone matrix may compress or relax with the changes in 

loading and affect the flow of the canalicular fluid. As the osteocytes are surrounded by a sheath 

of unmineralised matrix, which is permeable to macromolecules like albumin and peroxidases, a 

flow of fluid over the sheath and diffusion of macromolecules may be driven by loading (52, 53). 

Furthermore, osteocytes themselves are sensitive to shear stress (54-56). This may be a result of 

the composition of the osteocyte cytoskeleton and also the composition of the matrix sheath 

surrounding the osteocyte. There is evidence of interaction between receptors on the osteocyte and 

macromolecules in the matrix sheath (14).  

Within the mechanotransduction process, there are many pathways utilised to transduce signals 

intracellularly for consequent cellular responses. These include prostaglandins, calcium signalling, 

kinase signalling, G-protein mediated signalling, nitric oxide, estrogens, nucleotide signalling, and 

the Wnt/β-catenin pathway (46, 51). Early responders include adenosine triphosphate (ATP) 

release and intracellular calcium signalling, followed by prostaglandins, nitric oxide, and mitogen-

activated protein kinase (MAPK) signalling (57). Notably, there is increasing evidence of cross-

interaction between these pathways during mechanotransduction (58-64). 

The osteocyte responds metabolically to the mechanical environment with subsequent paracrine 

signalling that can directly promote osteoblastogenesis and inhibit osteoclastogenesis (14, 65-67). 

It is likely that this mechanism allows signals from the osteocyte to be transferred to osteoblasts 

and osteoclasts to initiate/inhibit differentiation, and bone formation or resorption. In experiments 

where media from mechanically stimulated osteocytes was added to osteoblast precursor cells 

there was upregulation of osteopontin (OPN) and cyclooxygenase (COX) -2 within these precursor 

cells, indicating osteoblast differentiation (65). In experiments investigating osteoclast 

differentiation in the presence of mechanically stimulated osteocytes, RANKL and OPG was 

released by the osteocytes, inhibiting osteoclastogenesis (66). The expression levels of RANKL 

and OPG correlated with the mechanical stimulation (66). 
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2. Wnt signalling  

Wnt signalling is an evolutionary conserved cell signalling pathway, which is involved in many 

processes of embryonic development, including limb polarity, sex determination, and 

organogenesis (2, 68, 69). Post-developmentally it is also important in driving cellular 

differentiation and proliferation in many tissues (70). Wnt signalling is categorized into canonical 

and non-canonical Wnt pathways. The canonical Wnt pathway is often also referred to as the 

Wnt/β-catenin pathway, and will be referred as this within this thesis.  

 

2.1.  Wnt/β-catenin signalling 

Wnt/β-catenin signalling is triggered by the binding of a protein from the Wnt family to a co-

receptor complex on the surface of the cell (Figure 1.4A). This complex includes frizzled (Fzd) 

and low density lipoprotein receptor-related protein -5 or -6 (LRP5/6), and some evidence that 

they also bind to LRP4 (71-73). Activated Fzd, following Wnt activation on the cell surface, is 

able to bind dishevelled (Dvl) within the cytoplasm (74). Additionally, LRP5/6 binds with axin 

within the cytoplasm through their serine and proline rich cytoplasmic tail (75). Dvl and axin are 

both part of an intracellular complex with glycogen synthase kinase-3 (GSK-3) (76), which also 

includes adenomatous polyosis coli (APC) and β-catenin (77), and Casein kinase 1 (CK1) family 

members (78). The binding of the GSK-3 complex to the cell surface results in GSK-3 inhibition 

and disruption of the complex leading to dephosphorylation and a release of β-catenin. Unbound 

-catenin accumulates in the cytoplasm and subsequently translocates into the nucleus where it 

stimulates TCF/LEF dependent transcription.  

When Wnt protein binding to the cell surface is prevented, possible by a variety of inhibitors, -

catenin is bound within the GSK-3 complex, resulting in its phosphorylation and subsequent 

degradation by proteasomal machinery (Figure 1.4B). Inhibition of Wnt protein binding thus 

prevents downstream gene transcription. -catenin activated gene transcription may also be 

inhibited within the canonical Wnt pathway by antagonists within the cytoplasm and the nucleus. 

These are covered in more detail within section 2.3.3. 
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Figure 1.4. Diagram of the canonical Wnt pathway. A) Wnt binding to co-receptors LRP5/6 and Fzd 

initiates an intracellular cascade resulting in unphosphorylated β-catenin accumulating in the 

cytoplasm, then translocating into the nucleus and initiating TCF/LEF dependent gene transcription. 

B) Canonical Wnt binding is inhibited by a variety of inhibitors extracellularly, intracellularly, and 

within the nucleus. The resultant effect of such pathway inhibition is reduced downstream TCF/LEF 

dependent gene transcription. Diagram from Macsai et al., 2008 (2). 

 



Chapter 1. Introduction 

17 
 

2.2.  Non-canonical Wnt signalling 

The non-canonical Wnt pathways broadly encompass a range of Wnt activated pathways that do 

not involve β-catenin (79). The primary two are the Wnt/calcium (Wnt-Ca2+) pathway and the 

JNK/planer cell polarity (PCP) pathway (2, 80, 81). The Wnt/calcium and PCP pathways both 

utilise Fzd as the cell surface receptor and Dvl within the cell, but they do not involve the LRP co-

receptors and result in intracellular cascades that differ to that of the Wnt/β-catenin pathway (70, 

82, 83). Recently, another β-catenin independent Wnt pathway was identified in tumour cells (84). 

This pathway is mediated by FYN tyrosine kinase and STST3 transcriptional regulator.  

Though it is the Wnt/β-catenin pathway in which this research will focus, it must be noted that 

there is potential competition between non-canonical and Wnt/β-catenin pathways for Wnt binding 

to Fzd, and for the intracellular action of Dvl. Further, a number of studies have shown suppression 

of Wnt/β-catenin signalling by non-canonical Wnt signalling (85-88). 

 

2.3.  Wnt/β-catenin pathway proteins, receptors, inhibitors and activators 

Canonical Wnt signalling involves a large range of Wnt proteins, Wnt receptors, activators and 

antagonists, which all act to regulate β-catenin activity.  

 

2.3.1. Wnt/β-catenin pathway activators 

Wnt proteins are cysteine-rich glycoproteins of about 350-400 amino acids containing an N-

terminal signal peptide for secretion (2, 71). Wnt proteins are hydrophobic due to post-translational 

modification (89). This occurs at a conserved cysteine region and is important for signalling. There 

are 19 known Wnt proteins in humans and mice (Wnt-1, -2, -2b, -3, -3a, -4, -5a, -5b, -6, -7a, -7b, 

-8a, -8b, -9a, -9b, -10a, -10b, -11 and -16) (90). Some of these Wnts are known to activate the 

Wnt/β-catenin pathway, some the non-canonical Wnt pathways, and others have evidence of 

activation of either (91). It is still not completely elucidated the involvement of these 19 Wnts 

have, and it remains a complexity within bone biology.  

There are also other known activators of Wnt/β-catenin signalling. These are unrelated to Wnt 

proteins and include Norrin, R-spondin and WISE (Wnt1 induced secreted protein). Norrin binds 
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Fzd-4 and LRP-5, and R-spondin binds to Fzd-8 and LRP-6, initiating Wnt/β-catenin signalling 

(71, 92, 93). WISE, typically known to be an antagonist of the canonical Wnt pathway, can also 

behave as an activator at times (94). 

 

 

Within the Wnt/β-catenin pathway Wnt proteins bind in a receptor trimeric complex with the co-

receptors Fzd and LRP5/6 (95). There are 10 Fzd genes in the mammalian genome, though they 

have variable binding capacities and some may possibly be redundant (71, 89). Fzds pass the 

transmembrane seven times and contain a cysteine-rich domain on the N-terminus that is 

implicated in the binding to Wnt proteins (89, 96). LRP5/6 belong to the low density lipoprotein 

receptor (LDLR) family of proteins, which are able to bind and internalise ligands (75). LRP5/6 

however cannot perform endocytosis due to the absence of the internalisation sequence common 

in LDLR receptors. Also distinguishing LRP5/6 from the other LDLRs is their proline and serine 

rich cytoplasmic tail which, as mentioned, recruits axin. Another LRP, LRP4, shares similar 

binding domains to LRP5 and LRP6 (72), however it may actually be a negative regulator of Wnt 

signalling by augmenting the binding of sclerostin with LRP5/6 (97). 

LRP5 and LRP6 have 71% homology and may have some redundancy within the gastrulation stage 

of embryonic development (98). However, their roles beyond this may differ. LRP5 is dispensable 

in embryonic development, with the survival of LRP5 deficient mice, yet vital in adult bone 

homeostasis (71). Mice completely deficient of LRP6 however exhibit developmental defects 

indicating the necessity of this receptor during embryogenesis (99).  

 

2.3.3. Wnt/β-catenin pathway antagonists 

There are a range of antagonists of the canonical Wnt pathway at the extracellular, intracellular 

and nuclear levels, and this review will only cover a number of these. 

Within the nucleus the inhibitor Chibby is able to bind β-catenin, preventing activation of the TCF-

LEF transcription factors, and further may possibly translocate β-catenin out from the nucleus 

(100). Further, the proteins Groucho, ICAT and NEMO-like kinase (NLK) are all able to dissolve 
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the binding of β-catenin to transcriptional factors and thus repress transcription activity (75, 101, 

102).  

The number of factors involved within the GSK-3 complex provide a multitude of mechanisms for 

the regulation of Wnt/β-catenin signalling within the cytoplasm. Axin can be dephosphorylated by 

Protein Phosphatases -1 and -2C preventing the formation of the GSK-3 complex (103, 104). The 

GSK-3 kinase activity can be mitigated by a number of kinases including protein kinases A, B 

(Akt) and C, and also MAPK-activating protein (105). The interaction of GSK-3 to Axin is 

inhibited by FRAT (frequently arranged in advanced T-cell) -1 and -2 (106-108).  

The extracellular inhibitors include those which bind to and neutralise the Wnt proteins, and those 

that bind to the LRP5/6 or Fzd co-receptors. Wnt inhibitory protein (WIF) and secreted Fzd-

related-proteins (sFRP) can both bind directly to Wnt proteins inhibiting their receptor binding 

capabilities (2). sFRP can also form non-functional complexes to Fzd and so prevent Wnt protein 

binding (2). There are also antagonists which bind directly to LRP5/6 co-receptors preventing Wnt 

activation. These include Dickkopf (DKK), sclerostin, WISE (which can also behave as an 

agonist), and also the LRP5/6 β-propeller maturation chaperone Mesd (71, 109). 

There are four DKK family members, DKK1-4, and also a DKK3 related protein called Soggy (2). 

Along with affinity to LRPs, DKK proteins also are able to bind Kremen proteins (Krm) (110). In 

doing so, when binding LRP5/6 they can cause the receptor to undergo endocytosis (2, 71). Thus, 

though DKK proteins can inhibit Wnt signalling alone, it is thought that with Krm the inhibition 

is sustained due to the subsequent reduction in LRP receptors on the membrane surface (75). 

DKK1 is the most potent of the DKK proteins and has a high affinity to LRP6 (111). DKK1 is 

widely expressed developmentally, including in the posterior mesoderm, gut endoderm, and the 

neural plate, limb morphogenesis and is important in regulating Wnt3 for normal head 

morphogenesis (112, 113). In adults, DKK1 is highly expressed in and largely restricted to bone 

(75, 114), however DKK1 expression has also been seen in cartilage (115, 116) and evidence of 

weak expression in thymus, lung, duodenum and brown adipose tissue (114). 

Sclerostin and WISE share homology and are both members of the CCN family – proteins known 

for cell adhesion and signalling, extracellular matrix regulation and roles in skeletal development, 

chondrogenesis and angiogenesis (75, 117). As mentioned, WISE is able to both activate and 

inhibit canonical Wnt signalling, depending on the circumstances in which it is secreted (94). 
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Sclerostin is a potent and specific canonical Wnt pathway inhibitor, but is restricted in expression 

to the bone compartment. Sclerostin is expressed mainly by osteocytes and mineralising 

osteoblasts, though some expression has also been seen in cementocytes (similar to an osteocytes 

within the lacunae of tooth cement) and mineralized hypertrophic chondrocytes (118-120).  

Mesd is vital as a chaperone in the maturation of the LRP5/6 β-propeller modules (121, 122). 

However, as Mesd has such an affinity to these modules it functions within the extracellular space 

to inhibit Wnt binding to LRP5/6 and thus antagonises Wnt signalling (123). 
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3.   Role of the Wnt/β-catenin pathway in bone 

Wnt/β-catenin signalling is active in many tissues, and the modulation of this pathway has 

important effects on cellular proliferation and differentiation. In bone, Wnt/β-catenin signalling 

helps regulate cells of the osteoblast lineage, but has also been implicated in both chondrogenesis 

and osteoclastogenesis. The Wnt/β-catenin pathway is therefore a critical regulator of skeletal 

development, homeostasis and even repair. 

 

3.1.  Osteogenesis and the Wnt/β-catenin pathway  

Wnt/β-catenin pathway primarily impacts on bone and bone anabolism via its regulation of 

osteoblasts, through their cell commitment, cell proliferation, apoptosis, and cell functioning (75, 

124). Increased Wnt/β-catenin signalling results in increased osteoblast proliferation, 

differentiation and function, and reduced apoptosis (125-128). Modulation occurs through the 

number of Wnt proteins, inhibitors, and receptors involved in the Wnt/β-catenin pathway. Much 

of the understanding of Wnt/β-catenin signalling and osteoblastogenesis has been gained from 

clinical and pre-clinical studies involving mutations of these factors. Some of these studies are 

discussed in section 3.4, however below is a brief overview of the role of the Wnt/β-catenin 

pathway in osteoblast differentiation and terminal cell fate. 

Osteoblasts and chondrocytes are derived from the same mesenchymal precursors and Wnt/β-

catenin signalling positively pushes these precursors towards osteoblastogenesis and away from 

chondrogenesis. Wnt/β-catenin regulates osteoblast differentiation from mesenchymal stem cells 

and inhibition of the Wnt pathway, and thus inhibition of β-catenin initiated transcription, in 

mesenchymal cells prevents osteoblastic differentiation, instead promoting chondrogenesis (129-

131). In vivo, mice with β-catenin knocked-out show an overall decrease in mature osteoblasts, 

and a reduction in expressed collagen I, osterix, and osteocalcin, usually expressed by the mature 

osteoblast (130, 132). In vitro, early osteoblastic progenitors with β-catenin knocked out converted 

to the chondrogenic lineage rather than differentiating into osteoblasts (133). 

Wnt/β-catenin also regulates the later terminal stages of osteoblastogenesis, requiring a reduction 

in β-catenin signalling. Osteoblast precursor cells expressing stabilised β-catenin had increased 

proliferation and differentiation, but reduction in later stage cell differentiation shown by the lack 
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of osteocalcin expression (133). Further, when β-catenin was knocked-out in vitro from 

differentiated osteoblasts already expressing osteocalcin, the cells failed to terminally mature 

(131). The importance of β-catenin signalling is highlighted by upregulation of Wnt inhibitors in 

osteoblasts at the terminal stages of differentiation, such as DKK1, WIF1, Sfrp2, and FzdB (75).  

 

3.2.   Chondrogenesis and the Wnt/β-catenin pathway 

Along with the role of Wnt/β-catenin signalling within mesenchymal progenitor cell fate 

determination of chondrocytes/osteoblasts, the pathway also is critically important for chondrocyte 

differentiation and maturation. These chondrocyte differentiation/maturation roles are seen both 

embryonically and postnatally and affects processes such as limb formation, bone formation and 

growth (2). 

Developmentally, Wnt/β-catenin signalling, such as that driven by Wnt7a and Wnt3a, inhibits 

mesenchymal differentiation into chondrocytes (134, 135). This likely occurs through regulation 

of Sox9, a chondrogenic transcription factor, as well as other cell cycle regulators. Furthermore, 

β-catenin can also block the maturation of nascent chondrocytes (136). Chick limb bud formation 

experiments have further demonstrated roles for Wnt6, Wnt5a, and Wnt7a in achieving normal 

pattern formation through control of chondrogenic differentiation (137-139). 

A more intricate process for Wnt signalling in chondrogenesis has arisen, where it seems that 

sequential modulation of Wnt proteins either in a stage-dependent manner, or through a number 

of Wnts, is likely to be an important factor in chondrocyte differentiation. For example, at the 

embryonic growth plate Wnt5b promotes chondrocyte proliferation and prevent differentiation, 

while Wnt5a actually stimulates differentiation of proliferative chondrocytes into prehypertrophic 

chondrocytes (140, 141). Further, cells extracted from embryonic limb buds and treated with 

Wnt5a were again stimulated to chondrogenic differentiation, while Wnt5a treatment of already 

hypertrophic chondrocytes inhibited further maturation (142). It is still to be disproved that 

inhibition of Wnt/β-catenin is required for complete maturation of the chondrocyte, but it appears 

that the Wnt signalling requirement is stage-dependent during chondrogenesis.  

The likely temporal and spatial Wnt requirement for chondrogenesis is further indicated by region 

specific Wnt presence in the developing limb bud (143). Further it is indicated in the postnatal 
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growth plate, where expression of at least eight of the 19 Wnts has been demonstrated in some, or 

all of the four zones of the growth plate, and at different levels (2, 141). They have specific roles 

within each of these zones, and are modulated through the large number of Wnt activators, 

receptors and inhibitors of this pathway (143). A figure by Macsai et al., 2008 illustrates the spatial 

Wnt expression within the postnatal growth plate, along with the before mentioned action of Wnt5a 

and Wnt5b on the proliferative and prehypertropic chondrocytes (Figure 1.5). 

 

 

 

 

 

 

Figure 1.5. Wnt ligand expression and function within the zones of the postnatal growth plate. R: 

resting zone; P: proliferative zone; PH: prehypertrophic zone; H: hypertrophic zone. Image 

modified from Macsai et al., 2008 (2). 
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3.3.   Osteoclastogenesis and the Wnt/β-catenin pathway 

Osteoclastogenesis and bone resorption is inhibited following Wnt/β-catenin signalling in 

osteoblasts and osteocytes. This modulation is through OPG and RANKL expression induced by 

Wnt/β-catenin signalling (144-147). Interestingly, there is some evidence that osteoclast 

precursors may express the Wnt antagonist sclerostin, and that mature osteoclasts may express 

Wnt ligands (148). This indicates a likely canonical Wnt pathway mediated feedback loop.  

 

3.4.   Bone homeostasis and mechanotransduction, and the Wnt/β-catenin pathway 

Bone homeostasis requires a balance between bone formation and bone resorption, both of which 

are affected by the Wnt/β-catenin pathway. Osteoblasts and osteoclasts work in a coupled manner 

to repair microdamage, release and store essential minerals, and further to maintain the size, shape 

or mass of the bone. Changes to size, shape and mass of the bone can occur when bone anabolism 

and catabolism becomes uncoupled or when everyday activities upon the skeleton are altered. The 

canonical Wnt pathway is modulated in these instances of changes to bone homeostasis and 

mechanotransduction, as detailed below. 

 

3.4.1. Bone homeostasis and the Wnt/β-catenin pathway 

The appreciation of the Wnt/β-catenin pathway as a prominent regulator of bone homeostasis 

developed through genetic analysis of rare human diseases of low or high bone mass, which have 

been further investigated in pre-clinical experimental studies.  

 

3.4.1.1. LRP5 and LRP6 mutations 

Osteoporosis pseudoglioma syndrome (OPPG) results in low bone density, bone deformation and 

fractures, and is caused by a loss-of-function mutation in the Lrp5 gene, thus reduced Wnt/β-

catenin signalling (149). Conversely, gain-of-function mutations in the Lrp5 gene, which prevent 

binding of Wnt antagonists and thus increases Wnt/β-catenin signalling, is associated with high 

bone mass and density in humans (150-154).  
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These effects on bone mass have been confirmed in Lrp5 gene mutation animal studies. Mice with 

mutations causing ubiquitous inactivation of LRP5 have been created (155-157). Complete 

disruption of LRP5 function results in abnormal osteoblast proliferation, leading to decreased bone 

formation and osteopenia. The level of severity is greater in mice with mutations within both 

alleles, however Lrp5+/- mice also have significantly lower bone volume (155). Conditional 

deletion of Lrp5 within DMP1 (dentin matrix protein 1) expressing bone cells similarly resulted 

in a lower bone mass, confirming the critical role of LRP5 in osteocytes and/or late-stage 

osteoblasts (158). DMP1 is expressed in osteoblasts, osteocytes and some tooth cells (159), and is 

commonly utilised for selective cre recombinase deletion of genes within osteocytes and late 

osteoblasts (160). 

A LRP5-related high bone mass (HBM) phenotype has also been created using mouse models 

(126, 158, 161). These involve missense mutations within the extracellular domain: either Gly171-

to-Val substitution mutation (G171V) or an Ala214-to-Val substitution mutation (A214V), though 

the former has been more extensively investigated. The G171V mutation has been reported in 

humans who have an autosomal dominant HBM trait (151, 154). This single amino acid 

substitution within the extracellular domain of LRP5 results in a decrease in sclerostin/LRP5 and 

DKK1/LRP5 interaction causing a reduction in Wnt inhibition and effectively an increase in Wnt 

signalling (162, 163). There is also evidence that the G171V mutation disrupts the interaction of 

Mesd with LRP5 leading to a reduction in LRP5 on the cell surface due to decrease in the 

maturation of these receptors (164). These LRP5 HBM mice have increased bone mass regardless 

of whether the HBM mutation is ubiquitous or within DMP1 expressing bone cells only (158). 

This confirms the action of LRP5 to be within osteocytes and possibly late-stage osteoblasts. The 

HBM effect seen in these mice is a result of increased bone formation, rather than an effect on 

bone resorption (126). 

Lrp6-/- homozygous deletion is neonatal lethal in mice (99). Developmental abnormalities, 

including truncated axial skeleton, limb defects and microphtalmia, are similar to defect reported 

in mice with Wnt gene mutations, such as Wnt-3a, Wnt-1 and Wnt-7a. These defects are however 

less severe and are likely due to the presence of the LRP5 receptor may have an overlapping 

function. Holmen et al. (157) showed that haploinsufficiency of LRP6 results in decreased bone 

mass and further decreased the osteopenia seen in Lrp5-/- mice. Similar low bone mass effects were 
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also seen in reduced function LRP6 mice, where bone mass is decreased and there is delayed 

ossification (165). 

 

3.4.1.2. Sclerostin and DKK1 mutations 

Other human high bone mass diseases are a result of reduced expression of the Wnt antagonist 

sclerostin, leading to increased Wnt/β-catenin signalling. Sclerosteosis is characterised by 

progressive bone overproduction, with either no effect or a small decrease in bone resorption, 

which results in tall stature, facial deformation, and more critically potential cranial nerve 

entrapment and high intracranial pressure (166-168). Sclerosteosis is caused by a mutation in the 

Sost gene resulting in a loss of the gene product sclerostin (169, 170). A similar high bone mass 

condition van Buchem disease, is also a result of a reduction in active sclerostin. A deletion 

downstream of the Sost gene likely has a negative outcome on sclerostin expression (171, 172). 

As the action of sclerostin is to prevent Wnt binding to the LRP co-receptors, like the LRP5/6 

mutations, there is again a distinct increase in Wnt signalling in Sclerosteosis and van Buchem 

disease.  

Animal studies investigating the modulation of sclerostin, and the similar Wnt antagonist DKK1, 

confirm the prominent effect that these antagonists have on bone mass. Mice overexpressing 

sclerostin or DKK1 ubiquitously, or within osteoblasts only, have a reduced number of osteoblasts 

and a resultant low bone mass (114, 173-175). Conversely, Sost-/- mice and Dkk1+/- mice both show 

a high bone mass phenotype due to increases in bone formation (112, 176-179). Complete loss of 

Dkk1 is embryonically lethal, due to the requirement of DKK1 to down-regulate Wnt3 signalling 

for head morphogenesis (112). Reducing Wnt3 expression through a heterozygous allele rescued 

the mouse, however with a halved birth rate (112). I have been part of a recent assessment of the 

bone phenotype of this mouse and we have confirmed it to have high bone mass, most 

predominately within cancellous bone (180). 
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3.4.2.  Bone mechanotransduction and the Wnt/β-catenin pathway 

3.4.2.1. Wnt/β-catenin pathway modulation is important within bone mechanotransduction 

Wnt/β-catenin signalling has been implicated as an important circuit for transducing 

mechanotransduction signals in bone. Historically, LRP5/6 has been envisaged as a 

mechanoreceptor that regulates bone mass. The anabolic response to mechanical loading is 

inhibited within Lrp5-/- mice, suggesting the requirement of this receptor, and Wnt/β-catenin 

signalling, for new bone formation (181, 182). Conversely, LRP5 gain-of-function mutations 

increase the response to mechanical stimulation, confirming LRP5 as a mechanosensor (182-184). 

The Wnt antagonist, sclerostin, is emerging as a powerful modulator of Wnt/β-catenin signalling 

within bone mechanotransduction. Notably, the osteocyte, which is vital for bone 

mechanotransduction, is the principal source of sclerostin (118, 185). Recently, increased 

osteocyte expression of sclerostin has been associated with decreased loading (disuse) in rodent 

models, suggesting a decrease in Wnt/β-catenin signalling within this unloading model (186, 187). 

Further, a decline in sclerostin expression was seen with the return of loading. Notably, mice 

deficient in sclerostin, through genetic knock-out or short-term treatment of neutralising antibodies 

to sclerostin, displayed abrogated response to disuse (188, 189). This suggests the secretion of 

sclerostin, and the blockade of Wnt/β-catenin signalling, as a requirement to bone resorption 

following unloading. In addition, down-regulation of sclerostin expression was associated with 

mechanical loading, with the change in sclerostin expression proportional to the strain energy (186, 

187). Further, within a transgenic mouse that constitutively expressed elevated sclerostin levels, 

the anabolic response to mechanical loading was abrogated, suggesting the necessity for sclerostin 

down-regulation, and for an intact Wnt/β-catenin pathway, for the anabolic response to mechanical 

loading to occur (190).  

 

3.4.2.2. β-catenin signalling is a requirement for bone mechanotransduction 

The downstream target for Wnt/β-catenin signalling is β-catenin and TCF/LEF related 

transcription. Both β-catenin levels and TCF/LEF activity are increased following in vitro 

mechanical stimulation (191, 192). However most notably, a critical threshold of β-catenin appears 

to be a requirement for the anabolic response of bone to mechanical loading (193). The loss of a 
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single β-catenin allele within DMP1 expressing cells in mice abolished the response of bone to 

mechanical loading.  

Most of our knowledge of β-catenin and mechanotransduction is in relation to increased loading, 

however an in vitro osteoblast study suggests that β-catenin is required for a response to unloading 

with β-catenin mediating RhoA GTPase down-regulation (194). It is therefore likely that β-catenin 

regulation is the crucial factor within bone mechanotransduction, and is the core regulatory 

component of the bone resorption and formation responses (195).  

 

3.4.2.3. Regulation of β-catenin signalling via multiple pathways and paracrine factors 

The regulation of β-catenin levels and activity is likely to be not solely reliant upon Wnt/LRP5/6 

signalling, and may occur through a number of LRP5/6-independent pathways that interact with 

the Wnt/β-catenin pathway downstream of Wnt/LRP5/6 signalling. Within MSC in vitro shear 

stress studies, focal-adhesion based connections and mTORC2 activation has downstream effects 

on β-catenin activity through direct modulation of GSK3β (196, 197). β-catenin activity was also 

shown to be modulated by the Akt-signalling pathway through a mechanism involving nitric oxide 

and focal adhesion kinase within an in vitro study of MLO-Y4 osteocytes undergoing pulsating 

fluid flow (198). Akt is known to phosphorylate β-catenin and increase its transcriptional activity 

(199, 200). These results were confirmed within an in vitro strain study of osteoblasts whereby the 

nitric oxide pathway was vital for β-catenin activation and TCF/LEF transcription and the Wnt/β-

catenin pathway was activated at the stage of Akt phosphorylation (201). The cytoplasmic levels 

of β-catenin also increased within in vitro MSCs following shear stress (202). This was due to a 

direct release of β-catenin from the transmembrane protein N-cadherin, which is a known 

mechanotransducer (203). These in vitro data suggest that mechanical stimulation of bone cells 

can lead to modulation of β-catenin levels and activity via LRP5/6-independent systems.  

The paracrine factors prostaglandins also have implications within bone mechanotransduction and 

the regulation of β-catenin activity. The anabolic response to bone loading has previously been 

shown within both in vivo and in vitro studies to be dependent on COX-2, a protein that facilitates 

prostaglandin formation (204-206). And prostaglandin E2 (PGE2) is able to induce β-catenin 

nuclear translocation within in vitro osteoblasts and osteocytes (207). Further, PGE2 is also known 

to down-regulate sclerostin expression, and in turn increase Wnt/β-catenin signalling (208). PGE2 
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release has also been shown to occur following mechanical loading of Lrp5-/- mice, despite the 

absence of an anabolic bone response (181). These data combined intimate that PGE2 release 

occurs independent of LRP5 activation and Wnt/β-catenin signalling, and that the regulation of 

Wnt antagonists by these early responses may provide a mechanism for subsequent Wnt/β-catenin 

modulation. 

PTH regulates levels of some Wnt antagonists, likely through modulation of β-catenin signalling 

and TCF/LEF transcription of these Wnt factors. Animal models of PTH administration results in 

decreases in sclerostin, DKK1 and WIFI (174, 209-211), and clinical studies of elevated 

endogenous PTH or administered PTH show decreased serum sclerostin levels (212-214). 

Alternatively, in a mouse study whereby PTH/PTHrP receptors were ablated in osteocytes, mice 

had greater sclerostin expression and were mildly osteopenic (215). PTH, binding its receptor 

PTH1R, can directly associate with LRP6 in vitro, activating signalling, axin recruitment and β-

catenin phosphorylation/stabilisation, in the absence of Wnt ligands (174, 216). In vivo rodent 

studies of PTH administration corroborated LRP6 phosphorylation and β-catenin increases within 

osteoblasts alongside increased bone formation (216). This phosphorylation of LRP6 by PTH-

PTH1R binding likely occurs through activation of protein kinase A (PKA) (216). Notably, PKA 

can by a downstream target of non-canonical Wnt signalling (217). 

There is also some evidence of the cross-talk between estrogen receptor (ER) and Wnt/β-catenin 

signalling pathways during mechanotransduction and bone anabolism. In particular, downstream 

events of the Wnt/β-catenin signalling pathway are dependent upon ERα. Within in vitro 

mechanical strain studies on established and primary osteoblastic cells, increased nuclear β-catenin 

accumulation and TCF/LEF activity were blocked by selective estrogen-receptor modulators 

(SERM) ICI 182, 780 and tamoxifen (192). Further, β-catenin accumulation and TCF/LEF activity 

following in vitro mechanical stimulation was abrogated within primary osteoblastic cells lacking 

ERα. Furthermore, within primary mesenchymal progenitor cells the activation of ER signalling 

by estradiol (E2), or exogenously expressed ERα, synergistically enhanced Wnt3A-induced 

osteogenic markers and matrix mineralisation (218). E2 induces GSK3β phosphorylation leading 

to activation and nuclear accumulation of β-catenin within preosteoblastic cells (219). Notably, 

TCF1 and TCF4 directly bind ER and modulate its transcriptional activity, with the TCF4 

interaction being antagonistic and the TCF1 interaction being synergistic (220). 
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In the consideration of the above data, is likely that β-catenin is the critical target within bone 

mechanotransduction, and though the LRP5/6 receptors are mechanosensitive the Wnt/β-catenin 

pathway is not the sole regulator of β-catenin dependent transcription. The Wnt/β-catenin pathway 

appears to be vital as a “switch-on” mechanism in bone mechanotransduction to ensure β-catenin 

signalling. This is a requirement for the downstream modulation of β-catenin in response to 

changes in load upon bone, both by the Wnt/β-catenin pathway itself and other interconnected 

pathways.  

Notably, much of the literature and current knowledge relates to Wnt/β-catenin pathway 

mechanotransduction involvement due to increased mechanical stimulation. It is not completely 

clear whether the same processes are involved in the transduction of signals following reduced 

load. Reduced loading may see a reduction in the signalling seen in normal load or high load 

situations, or in contrast it may involve novel processes. It has previously been shown within a 

murine microarray study that the genes and pathways altered with decreased loading/disuse were 

different to those altered with increased loading (63). Further, the bone of mice with ablated 

osteocytes did not respond to disuse, however did respond to returned loading activity (50). These 

studies suggest that distinct processes may be involved in the response of bone to increased and 

decreased load. 
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4. Orthopaedic clinical potential for Wnt/β-catenin pathway manipulation 

Due to the direct effect that the Wnt/β-catenin pathway has on bone anabolism, and the indirect 

effect on bone catabolism, manipulation of this pathway has great potential in orthopaedic 

conditions. There is the potential for improvements in diseases of inferior bone quality (such as 

osteogenesis imperfecta), the improvement of fracture repair, and even the treatment of multiple 

myeloma. Several recent pre-clinical manuscripts that I have published exemplify some of the 

possible uses of Wnt/β-catenin modulation. Activation of the Wnt pathway, through sclerostin 

deficiency, improved callus bone volume and strength in rodent closed and open fracture models 

(221, 222), and improved bone formation in a rat model of distraction osteogenesis (223). Further, 

inhibition of sclerostin through a neutralising antibody also improved the bone mass and strength 

in a mouse model of multiple myeloma, a plasma cell cancer that develops in the skeleton causing 

bone destruction and reduced strength (224). 

One of the most promising possibilities for Wnt/β-catenin pathway manipulation however is in 

diseases of low bone quantity, particularly osteoporosis. Osteoporosis is a prevalent and potentially 

debilitating disease. Bone becomes of such low mass that it is more susceptible to fracture. It 

affects over 75 million within the USA, Europe and Japan (225), and results in 8.9 million fractures 

worldwide each year (226). Though due to hormonal imbalances it is prevalent in the aged, 

osteoporosis is not restricted to the elderly. Premature generalized osteoporosis is also seen in 

OPPG, interestingly as a result of a loss-of-function mutation in the LRP5 receptor (73). Also not 

age discriminatory is secondary osteoporosis, which can result from primary diseases or through 

the treatment of primary diseases, such as thyroid conditions or following corticosteroid use (227). 

Bone loss is also prevalent in cases of skeletal disuse. This can be due to bed or chair confinement 

or in diseases of skeletal restriction, such as Duchene Muscular dystrophy.  

Osteoporosis develops following an imbalance of bone anabolism and catabolism, resulting in an 

overall loss of bone. Regulation of Wnt/β-catenin signalling may allow an increase in net bone 

formation, and perhaps an adjacent decrease in bone resorption, and thus could prevent or improve 

such low bone mass conditions.  

As there are a multitude of stages of regulation, both extracellular and intracellular, within the 

Wnt/β-catenin pathway (see section 2.2) there are a number of potential strategies for therapeutic 

manipulation to improve low bone mass diseases.  
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4.1. Targeting GSK-3β 

Already in long-term clinical use as a mood stabiliser is lithium, in the form of lithium salts. These 

are able to inhibit GSK-3β and thus drive downstream β-catenin signalling, resulting in an increase 

in osteogenesis. Pre-clinical investigations have shown that lithium improves bone mass due to 

increased bone formation in both wild type and low bone mass (LBM) Lrp5-/- mice (228), and also 

in tail suspended (unloaded/disuse) wild type mice (229). And there some contested evidence of 

reduced fracture risk in humans treated with lithium (230, 231). Similarly, a synthesised dual 

inhibitor of GSK-3α and GSK-3β also prevented bone loss in a pre-clinical rat model of osteopenia 

due to increased bone formation and a mild reduction in bone resorption, and also improved bone 

mass in wildtype (balb/c) mice due to mesenchymal progenitor proliferation and subsequent 

osteogenesis (232, 233). A rodent model of fracture healing was also improved with a GSK-3 

inhibitor (234). Such small molecule therapeutics inhibiting GSK-3β may be of use in protecting 

against further bone loss in osteoporosis and even potentially improving bone mass.  

The use of these drugs are however likely to be limited due to the potential of serious side-effects. 

Lithium is involved in other signalling pathways and lithium salts are widely known to have a 

narrow window of use due to potential toxicity. Some of the side effects of lithium treatment 

include impacts on kidney function, thyroid and parathyroid gland function, teratogenicity, tremor 

and weight gain (235). And though the GSK-3α/β dual inhibitor is specific to GSK-3 more than 

just β-catenin phosphorylation is affected. GSK-3 is known to be involved in the regulation of 

glycol and other glucose homeostasis steps, in inflammation and in the regulation of immune and 

migratory processes (105, 236-240). Dysregulation of GSK-3 is known to be involved in muscle 

hypertrophy, diabetes and insulin resistance, cancer and mental health disorders including bipolar 

mood disorder, schizophrenia, and Alzheimer’s disease (241). 

 

4.2. Targeting exogenous Wnt proteins 

Upstream of the canonical Wnt pathway are other potential targets to modulate Wnt/β-catenin 

signalling in bone. With LRP5 loss or gain of function studies (see section 3.4.1) we understand 

that bone mass can be effectively regulated at this extracellular step of the pathway. Avenues for 
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modulation at this extracellular level include increasing the level of Wnt/β-catenin pathway 

agonists or inhibiting endogenous canonical Wnt pathway antagonists. Preclinical studies of 

endogenously up-regulated Wnt10b have shown improvement in bone mass, providing some 

support for treatment with Wnt proteins (242, 243). However, there is a limitation to exogenous 

Wnt treatment due to the low solubility of Wnt molecules which impact on clinical administration. 

Local delivery of Wnt3a to skeletal defects within murine pre-clinical tests has been successful 

though by packaging Wnt3a within liposomal vesicles (244). The local Wnt3a administration 

resulted in proliferation of skeletal progenitors, accelerated osteoblastogenesis and accelerated 

bone formation within the mice. However, the ability to treat the entire skeleton with Wnts, such 

as would be required in osteoporosis, seems to be limited unless further work is undertaken to 

improve administration. 

 

4.3. Inhibition of Wnt antagonists 

Another avenue for upstream modulation of Wnt/β-catenin signalling is the regulation of Wnt 

antagonists. At the time of this review, there were a number of prospective Wnt antagonist targets, 

most of which had begun to be utilised within pre-clinical investigations and some within clinical 

trials.  

 

4.3.1. Utilising small molecules that bind SFRP-1 

SFRP-1 prevents Frizzled interaction with Wnts, and an elevated bone mass phenotype is seen in 

mice with deleted SFRP-1 (127). Some work has commenced into screening for small molecules 

that bind SFRP-1. Ex vivo calvarial culture studies have shown some evidence of some small 

molecules antagonising SFRP-1 resulting in increased osteoblast numbers and even increased bone 

area (245-247). These small molecules include iminooxothiazolidines, diarylsulfone 

sulphonamide and piperidinyl diphenylsulfonyl sulphonamides. However, again the modulation 

of SFRP-1 would not be specific to the bone compartment with the possibility of deleterious effects 

seen elsewhere in the body. For example, progressive abnormal cardiac structure and dysfunction 

is seen in the Sfrp-1-/- mice (248) and intense SFRP-1 inhibition may cause similar outcomes.  
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4.3.2. DKK1 neutralizing antibodies 

DKK1 is not specific to bone but it is largely limited to it with high expression seen in osteoblasts 

and maturing osteocytes (114). DKK1 therefore plays an important role in bone. As mentioned in 

section 3.4.1, down-regulation of DKK1 results in high bone mass, and the converse is also true. 

Pre-clinical investigations have been undertaken within rodents assessing the effect that 

neutralizing DKK1 antibodies have on bone (249, 250). Positive effects on bone formation and 

increased bone mass were seen in studies on gonad-intact growing mice and rats, however anti-

DKK1 antibody (DKK1-Ab) was not able to impact on the low bone mass in ovariectomized 

(OVX) rats. Neutralizing DKK1 antibodies have also shown improvement in healing rodent 

fracture models (249, 251). 

Further investigation into dosing regimens may allow us to see an action of DKK1-Ab in 

improving low bone mass conditions, however there is a high risk of adverse effects with DKK1-

Ab use. DKK1 is expressed elsewhere in the body, beyond the bone compartment, including within 

platelets, skin and cells of the joint (252-255). Despite the complicated adverse effects in DKK1 

modulation, continuing development and investigation into the potential of DKK1-Ab is likely due 

to promising outcomes that have also been observed in pre-clinical models of multiple myeloma 

(256-258), rheumatoid arthritis (254) and ankylosing spondylitis (259). 

 

4.3.3. Sclerostin neutralizing antibodies 

Of greater prospective for clinical Wnt modulation of bone is targeting sclerostin. As mentioned 

in section 3.4.1 a lack, or repression, of sclerostin results in an increased bone mass phenotype in 

both humans and mice, with increased bone density and content primarily as a result of increased 

bone formation. Anti-sclerostin antibody (Scl-Ab) treatment has been investigated in pre-clinical 

animal models, with resultant increases in bone formation, bone mass and bone strength (260-

264). These studies involved healthy non-human primates, aged rats, and OVX rats, which is a 

model for osteoporosis. Importantly, the anabolic effects were seen on both remodelling and 

previously resting bone surfaces within these studies suggesting anti-sclerostin antibody may be a 

viable treatment in low bone mass diseases. These studies all involved neutralizing antibodies to 

sclerostin developed by Amgen Inc. These were murine Scl-AbII, ratized Scl-AbII, ratized Scl-

AbIII and humanized Scl-AbV.  
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There have been two humanised Scl-Ab, romosumab (Amgen Inc. and UBC Inc.) and blosozumab 

(Eli Lilly), which have undergone clinical trials aimed for the treatment of osteoporosis and other 

low bone mass conditions. Romosumab has reached Phase III (265-267) and blosozumab Phase II 

(268-270).  

In a brief summary, all clinical trials have involved postmenopausal women (and also healthy 

males in Phase I romosumab). Treatment dose and length has varied from single doses (Phase I) 

(265, 268) to one year of treatment [monthly/quarterly (266, 267) or every 2 or 4 weeks (269)]. 

Increases in bone formation markers (such as P1NP, alkaline phosphatase or osteocalcin) and bone 

mineral density (with significant measurements recorded in the lumbar spine and/or total hip) were 

seen in all studies, along with decreases in CTx (C-terminal telopeptide, a bone resorption marker). 

Results overall confirm that Scl-Ab is an effective anabolic agent and may aid in returning 

uncoupled bone remodelling to a normalised state. 

The levels of bone formation markers however have shown to be transient, returning to or below 

baseline before the end of the trial and within the period of Scl-Ab dosing within Phase II and III 

trials (266, 267, 269). CTx levels however remained below baseline in these studies. Similar 

effects have been shown within pre-clinical data: OVX rats treated weekly with Scl-Ab for 26 

weeks had rapid increases in bone formation, however these anabolic effects were also transient 

(271). Notably, the anti-catabolic effects remained throughout the anti-sclerostin antibody 

treatment period. Similar cessation of strong anabolic effects have been seen in patients with 

Sclerosteosis (272).  

It is therefore likely that longer administration of Scl-Ab, or more potentially subsequent therapy 

with an anti-catabolic, may be required for Scl-Ab to be effective long-term in maintaining 

improved bone mass. An additional Phase II romosozumab trial involved an additional year 

extension of Scl-Ab (romosozumab) treatment, followed by 6-monthly treatment with denosumab 

(which targets RANKL and is used as an anti-catabolic therapy) (273). Results, though only in 

abstract form, suggest that subjects shifted to denosumab maintained BMD increases, whilst 

subjects shifted to a placebo in the third year had BMD levels that returned to pre-treatment levels. 

The Phase III romosozumab trial also included a second year of 6-monthly denosumab treatment 

for all subjects (267). Subjects from the original romosozumab group had reduced vertebral 

fracture after 12 months denosumab therapy compared to the control group. These data suggest 
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that the subsequent therapy of an anti-catabolic following a Scl-Ab regimen may allow for a more 

sustained outcome of improved bone mass. 

The mechanism behind the loss of prolonged bone anabolism with Scl-Ab therapy is not 

elucidated, however increased expression of the similar Wnt antagonist, DKK1, is noted when 

sclerostin is deficient (274-276). This has been seen within human and mouse conditions of Sost 

knock-out and also with the use of neutralizing antibodies to sclerostin. This may be negative feed-

back response due to the absence of sclerostin and activated Wnt/β-catenin signalling. It is 

unknown whether DKK1, or other Wnt factors, are modulated to compensate. 

There is some evidence that sclerostin is also expressed within articular cartilage (277, 278), and 

weak expression has been seen in adult kidney (169) and aorta (279). The risk to these tissues 

appears to be low however and evidence indicates that sclerostin inhibition does not seem to impact 

on the ability of cartilage to remodel following injury or during aging in rodents (278), though 

there is some contention over this (277).  

Only mild adverse side-effects, which were not deemed serious, were seen within Phase I and II 

clinical trials of Scl-Ab therapy. However, a recent news release from Amgen has indicated a 

safety concern with an imbalance of cardiovascular events within the Phase III romosozumab 

(branded as EVENITY) trial (280). The occurrence of positively adjudicated cardiovascular 

serious adverse events at 12 months was 2.5% with Scl-Ab treatment, but only 1.9% within the 

control alendronate group. This serious outcome may delay the soon to be expected release of 

romosozumab/EVENITY on to the market.  
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5. Aims and Hypotheses 

The Wnt/β-catenin pathway has an essential role in bone development, however its precise roles 

in bone homeostasis and mechanotransduction of bone loading requires further investigation. The 

Wnt/β-catenin pathway can be modulated with profound effects on bone formation/resorption and 

ultimately bone mass using neutralising antibodies to Wnt antagonists. Sclerostin antibodies 

provide effective bone anabolic and anti-catabolic actions, while producing minimal adverse 

effects. The transience of sclerostin antibody activity on bone anabolism has been speculated to be 

due to compensatory upregulation of DKK1, but has yet to be definitively shown. Sclerostin and 

DKK1 are also responsive to mechanical load, leading to supposition that these factors are 

important for bone mechanotransduction. 

Based on this background, the objective of this thesis was to investigate the effects of modulating 

the Wnt/β-catenin pathway on bone homeostasis and mechanotransduction. This was based on 

several key hypotheses: 

 

1) That exercise is redundant with therapies antagonizing the Wnt/β-catenin pathway  

Following mechanical loading there is a decrease in the expression of Wnt antagonists, 

sclerostin and DKK1. Furthermore, deficiency in these antagonists or other factors influencing 

Wnt/β-catenin signalling (e.g. LRP5 gain-of-function mutations, increased levels of Wnt 

agonists) increases bone formation and mass. It was hypothesized that the decreases in 

sclerostin and DKK1 expression following bone loading would be redundant with neutralising 

antibodies to sclerostin. 

 

2) That combined Wnt/β-catenin activating therapies have synergistic effects 

Neutralising antibodies to DKK1 and sclerostin show promising anabolic effects on bone. 

Based on emerging data that Wnt antagonists could be up-regulated in response to deficiency 

in other family members, it is possible that combining Wnt/β-catenin activating treatments 

could have synergistic effects by preventing any negative feedback. I hypothesise that having 
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combined deficiency in DKK1 and sclerostin will provide a synergistic anabolic response 

within bone. 

 

3) That any lack of redundancy between exercise and neutralising antibodies to 

sclerostin would be the result of compensation by other Wnt antagonists, such as 

DKK1 

While it was hypothesized that exercise and sclerostin antibodies would be redundant, however 

if this is proven incorrect this could be due to the result of a negative feedback loop within the 

Wnt/β-catenin pathway. As DKK1 levels are increased with Sost inactivation or with anti-

sclerostin antibody therapy, I hypothesise that DKK1 is a primary candidate for any lack of 

redundancy.  

 

Experimental Models  

Knock-out mouse models featuring gene inactivation for sclerostin (Sost KO) and DKK1 (Dkk1 

KO) were available to me. I also had access to a murine neutralising antibody to sclerostin, which 

was developed by Novartis Pharma AG and gifted by them and Mereo BioPharma. 

The mechanotransduction responses were assessed using tibial model of mechanical loading in 

both knockout and control mice. This loading model was developed by the Biomedical 

Engineering group at Cornell University, (Ithaca, NY, USA), and is widely used as an in vivo 

mechanical loading model (43, 45, 281-283). This model involves compressive axial cyclic 

loading of the mid-diaphysis of the tibiae, with the contralateral limb as non-loaded control. Of 

note, bilateral tibiae are symmetrical within growing rodents, with contralateral limbs suitable for 

use as controls (284).  

Due to the increased bone volume and strength of Sost KO and Dkk1 KO mice, it was hypothesized 

that there may be differences between animals matched for load versus those matched for strain, 

and thus both cohorts were examined. Sclerostin knockout mice were also assessed using a model 

of tibial disuse (unloading). While other groups have reported using an unloading hind-limb 

suspension model (188, 189), we utilised a unilateral tibial disuse model where muscle paralysis 
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is induced by intramuscular botulinum toxin (BTX) injection. Mice were strain, sex, and age 

matched with loading studies, allowing the two treatments to be directly compared.  

In terms of outcome measures, this work was analysed by dual‐energy X‐ray absorptiometry 

(DXA; GE Lunar PIXImus; Lunar Piximus Corp, Madison, WI, USA) and microcomputed 

tomography (microCT; Skyscan 1174 2; Skyscan NV, Kontich, Belgium), mechanical testing 

(Instron 5944; Massachusetts, USA), and histomorphometric analysis. Critical outcome measures 

included bone volume, bone density, bone strength, dynamic bone formation and osteoclast 

activity. Quantitative polymerase chain reaction (qPCR) for the Sost gene or immunohistochemical 

staining for sclerostin were also undertaken within studies involving Dkk1 KO mice. RNA 

sequencing was also performed (outsourced) for one study from mRNA collected from tibial mid-

diaphyses following two sessions of loading. This technology provided some mechanistic insight 

into the genes and pathways altered within loading treatment, sclerostin antibody treatment, and 

with combination therapy. These techniques are standard for high-quality bone analysis and 

important in the arena of bone mechanotransduction – microCT provides three-dimensional (3D) 

density, volume and architecture information, whereas histology of samples double-labelled with 

the fluorochrome calcein provides rate of bone apposition, and qPCR and RNASeq provide 

changes in gene transcription (43, 45, 190, 281, 283, 285, 286). End-points were chosen to allow 

comparison to other studies of bone mechanotransduction (43, 45, 186, 283). 

 

In conclusion, the aim of this project was to examine the juxtaposition between Wnt/β-catenin 

activation, biomechanical loading, and bone quantity/quality. In particular, the effects of short term 

and chronic inhibition of Wnt antagonists were trialled in a variety of preclinical models. 
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ABSTRACT
Sclerostin, encoded by the Sost gene, is an important negative regulator of bone formation that has been proposed to have a
key role in regulating the response to mechanical loading. To investigate the effect of long‐term Sclerostin deficiency on
mechanotransduction in bone, we performed experiments on unloaded or loaded tibiae of 10week old female Sost�/� andwild type
mice. Unloading was induced via 0.5U botulinum toxin (BTX) injections into the right quadriceps and calf muscles, causing muscle
paralysis and limb disuse. On a separate group of mice, increased loading was performed on the left tibiae through unilateral cyclic
axial compression of equivalent strains (þ1200me) at 1200 cycles/day, 5 days/week. Another cohort of mice receiving equivalent
loads (�9.0 N) also were assessed. Contralateral tibiae served as normal load controls. Loaded/unloaded and normal load tibiae were
assessed at day 14 for bone volume (BV) and formation changes. Loss of BV was seen in the unloaded tibiae of wild type mice, but BV
was not different between normal load and unloaded Sost�/� tibiae. An increase in BV was seen in the loaded tibiae of wild type and
Sost�/� mice over their normal load controls. The increased BV was associated with significantly increased mid‐shaft periosteal
mineralizing surface/bone surface (MS/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS), and
endosteal MAR and BFR/BS. Notably, loading induced a greater increase in periosteal MAR and BFR/BS in Sost�/�mice than in wild
type controls. Thus, long‐term Sclerostin deficiency inhibits the bone loss normally induced with decreased mechanical load, but it
can augment the increase in bone formation with increased load. © 2014 American Society for Bone and Mineral Research.
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Introduction

Sclerostin, a secreted glycoprotein encoded by the Sost gene,
is an important negative regulator of bone accumulation.(1,2)

Sclerostin inhibits canonical Wnt signaling via blockade of low‐
density‐lipoprotein receptor‐related protein (LRP) receptors,
including LRP5 and LRP6.(3) Sclerostin expression is specific to
terminally differentiated cells embedded within mineralized
matrix, including osteocytes, cementocytes, and hypertrophic
chondrocytes, but not osteoblasts or bone lining cells.(1,4–6)

The major downstream effect of Sclerostin expression is the
inhibition of osteoblastogenesis,(6) although Sclerostin has also
been shown to promote osteoclastogenesis,(7,8) via modulation
of receptor activator of nuclear factor kappa‐B ligand (RANKL)
and osteoprotegerin (OPG), synthesis in osteocytes.(9,10)

The key role of Sclerostin in regulating bone homeostasis was
identified via the human conditions van Buchem’s disease and
Sclerosteosis.(11–14) Both result from mutations in the Sost gene,
leading to increased bone formation and high bone mass. A
comparable high bone mass and increased bone formation
phenotype has been described in mouse models in which Sost is
knocked‐out.(15,16) This role of Sclerostin has led to inhibitory
strategies for the prevention and treatment of bone loss in
osteoporosis and metabolic bone disease. Animal and human
trials of anti‐Sclerostin antibodies have demonstrated increased
bone formation and mass with treatment.(17–22) Importantly, the
effect on bone formation has been seen inmodels of osteoporosis
and on resting bone surfaces along with remodeling surfaces.

Sclerostin has further been proposed to be a key regulator of
mechanotransduction in bone. Increases in Sclerostin have been
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implicated in the bone loss associated with reduced loading. Sost
mRNA expression was reported to increase in rodent models of
limb disuse and decline upon subsequent loading.(23,24) Mice
deficient in Sclerostin, through genetic knock‐out or short‐term
anti‐Sclerostin antibody treatment, did not display the same
extent of bone volume loss following hind limb unloading
through tail suspension.(25,26) This result suggests that Sclerostin
expression may mediate the response of bone to unloading.
Discrepancies remain whether this bone loss inhibition is due to
reduced bone anabolism, or rather decreased resorption.
Conversely, Sost mRNA and Sclerostin protein expression were
decreased following mechanical loading, and this reduction
correlated with regions showing increased bone formation.(23,24)

Importantly, in a transgenic mouse that constitutively expressed
elevated Sclerostin levels, bone formation and bone volume gain
associated with mechanical loading was inhibited.(27) However,
limited research has been undertaken to understand the effect
that Sclerostin deficiency has on bone’s ability to respond to
increased mechanical load. This investigation is important with
the potential use of anti‐Sclerostin antibodies.
The canonical Wnt/b‐catenin pathway has many inhibitors

and regulators aside from Sclerostin. Other Wnt inhibitors, such
as secreted Fzd‐related‐proteins (sFRPs) and Dickkopfs may have
a role in Wnt inhibition within the bone compartment, or may be
compensatory in the absence of Sclerostin. Interestingly, Dick-
kopf‐1 (Dkk1) is up‐regulated when Sclerostin is absent.(28,29)

Further, Dkk1 might have a Wnt3a‐independent effect on
cyclooxygenase‐2 (Cox‐2) expression, an early mechanical
loading induced transcript.(30)

In this study, we aimed to investigate the effects of long‐term
Sclerostin deficiency on mechanotransduction. Increased and
decreased loading studies were performed on the Sost�/�
mouse and age‐matched wild type controls. Bone volume and
formation changes in loaded/unloaded and contralateral tibiae
were examined using a combination of micro‐computed
tomography (microCT) and histomorphometry outcome
measures.

Materials and Methods

Sost knockout mice

Sost�/� mice, previously described,(14,31) were backcrossed
to C57BL/6J genetic background using founders with above
99.09% isogenicity/identity to the C57BL/6J strain. Age‐matched
Sostþ /þ (wild type/WT) C57BL/6J control mice were obtained
(Charles River Laboratories, Sulzfeld, Germany). All animal
experiments were approved by the Western Sydney LHD Animal
Ethics Committee, protocol 4174.

Botulinum toxin‐induced tibial unloading

10 week old female Sost�/� and wild type mice (N¼ 10/strain)
were anesthetized (70mg/kg ketamine, 10mg/kg xylazine) and
then injected with 0.5U botulinum toxin (BTX, Allergen) into both
the right quadriceps and the right calf muscles. This treatment
caused tibial unloading by muscle paralysis and limb disuse.
After 24 hours mice were unable to use their right hind limb. Left
tibiae served as normal load controls. Mice were monitored
throughout the study to ensure limb disuse was maintained;
including assessing ability to grip, walk, and stretch out the right
hind limb. Weekly body weights were recorded (Fig. S1). Mice
were injectedwith calcein (10mg/kg, SigmaAldrich) 8 and 1 days
before euthanasia, and euthanized at day 14. Post‐harvest, hind

limbs (tibia, fibular, femur and muscle) were weighed excluding
skin and feet, and fixed 24 hours, 10% formalin and stored in 70%
ethanol.

Tibial mid‐diaphyseal strain gauging

As Sost�/� mice possessed denser bones than wild type, strain
gauging was performed to calibrate the applied loading to
reflect any stiffness differences present between the two
genotypes. Strain (bone tissue deformation) levels at the
midshaft of right and left tibiae were measured in 10 week old
female Sost�/� and wild type mice (N¼ 5/strain) as previously
described.(32) Briefly, mice were anesthetized (isoflurane inhala-
tion) and a small incision was made in the skin at the anterior
tibia, half way down the bone. Muscle and periosteum were
scraped away to expose the diaphysis, and the bone cleaned/
dried withmethyl ethyl ketone. Aminiature single element strain
gauge (EA‐06‐015LA‐120, Vishay Micromeasurements, NC, USA)
was attached to the medial midshaft aligned with the bone’s
longitudinal axis.

The left hind limb was placed into a custom made loading
apparatus so that the heel and knee were cupped and held
securely. A range of cyclic axial compressive loads, ranging�4 to
�24N, were applied using a 4Hz haversine waveform. No tibial
failures occurred with the load range. The strain at each load
increment was recorded (National Instruments, Labview v8.2).
The relationship between the axial force applied and the strain
on the tibial midshaft was determined for each genotype and
was used to calculate the load required to achieve þ1200me at
the tibial mid‐shaft for both the Sost�/� and wild type mice.

Cyclic tibial loading

10 week old female Sost�/� and wild type mice (N¼ 10/strain)
underwent unilateral cyclic axial compression of the left tibia.
1200 cycles were applied 5 days/week for 2 weeks, with rest on
days 6, 7, 12, and 13. Equivalent loads for Sost�/� and wild type
mice were applied to achieve þ1200me on the mid‐shaft. A
separate cohort of wild type and Sost�/� mice all received
�9.0N force to directly compare load‐matched responses
between the genotypes. Weekly body weights were recorded
(Fig. S1).

Mice were injected with calcein (10mg/kg, Sigma) 10 and
3 days before euthanasia, and euthanized at day 14. Tibiae were
fixed 24 hours in 10% formalin and stored in 70% ethanol.

Dual‐energy X‐ray absorptiometry

Dual‐energy X‐ray absorptiometry (DXA) (GE Lunar PIXImus;
Lunar Piximus Corp, Madison, WI, USA) was performed at days 0,
7, and 14 for unloading and loading studies, either under
isoflurane anesthesia or post‐euthanasia. For unloading studies a
region of interest of 20 pixels long by 13 pixels wide was
positioned below the growth plate within the metaphysis, which
is the region most responsive to unloading‐induced bone loss.
For loading studies a region of interest of 30 pixels long by
13 pixels wide was analyzed in the diaphysis, centered half‐way
along the tibia, to correlate with the region where the known
strain was produced. Bone mineral density (BMD) and bone
mineral content (BMC) were obtained.

MicroCT

Right and left tibiae from unloading/loading studies were
microCT scanned (Skyscan 1174 2; Skyscan NV, Kontich, Belgium)
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using 12mm isotropic voxel resolution, 0.5mm aluminium filter,
50 kV X‐ray tube voltage, 800mA tube electric current, and
4500ms exposure time. Images were reconstructed using a 0–0.1
greyscale (NRecon v1.6.1.7; Skyscan NV) and analysed with
CTAnalyser (Skyscan NV). The minimum threshold for bone
was 0.4 g/cm3, determined through correlation to phantoms of
known density.

All microCT analysis excluded the fibula. A volume of interest
(VOI) denoted “7.8mm VOI” was selected, commencing 0.5mm
below the growth plate and finishing 7.8mmdistally, proximal to
the tibia‐fibula joint (Fig. 1). Consecutive VOIs of height 0.06mm
were assessed along the 7.8mm VOI to visualize bone volume
change, between treated and control, along the loaded/
unloaded tibiae. Sub‐regional analysis was performed within
the metaphysis and diaphysis (Fig. 1). A metaphyseal VOI height
of a 1.2mm, commencing 0.5mm below the growth plate, was
denoted the metaphyseal “CancþCort” VOI as it assessed both
the cancellous and cortical metaphyseal bone together. Within
this region, a “Cancellous” only VOI was analyzed by excluding
the cortical sheath. The “Cortical” bone was also analyzed
separately, excluding cancellous bone. Two diaphyseal VOIs of
0.5mm height were assessed, 37% and 50% down the tibia from
the proximal end. These VOIs correspond with other published
studies that examine the response to increased load in the
tibia.(23,32–34)

Bone parameters assessed within cancellous VOIs were
trabecular bone volume (BV), trabecular bone volume/total
volume (BV/TV), tissue volume (TV), and tissue mineral density
(TMD), as well as microarchitecture parameters of trabecular
thickness (Tb.Th), number (Tb.N), and separation (Tb.Sp).
Within cortical VOIs cortical BV, cortical thickness (Ct.Th) and
TMD were assessed, as well as periosteal (Ps) and endosteal (Ec)
surface and polar moment of inertia [MMI(polar)], a geometric
predictor of whole bone strength. When the metaphyseal VOI
contained cancellous and cortical bone then BV and TV were
assessed.

Bone histomorphometry

Mineralized diaphyseal samples were embedded in methyl
methacrylate and 5mm transverse sections cut at two regions of
interest in each tibia: 37% and 50% from the proximal end of
the tibiae. Images were captured using a Leica DMLA CTRMC
microscope (Leica Microsystems, Heerbrugg, Switzerland) and a
QICAM Fast 1394 color 12 bit camera with QCapture software
version 2.6.8.2 (Quantitative Imaging Corporation, British
Columbia, Canada). The diaphyseal cortical bone was analyzed
for daily mineral apposition rate (MAR), mineralizing surface/
bone surface (MS/BS), and bone formation rate/bone surface
(BFR/BS).

Coronal sections of the proximal tibiae were cut for
metaphyseal cancellous bone assessment. Mineralized metaphy-
seal sampleswere cryosectioned (5mm)using Cryofilm type IIC(10)

(Section‐Lab Co., Hiroshima, Japan) and images captured using
Aperio Scanscope FL, Scanscope CS2 and Aperio Imagescope
v11.2.0.780 (Aperio, Vista, CA, USA). Samples were analyzed for
MAR, MS/BS, and BFR/BS. Sections were also stained for tartrate‐
resistant acid phosphatase (TRAP) and analysis performed for
osteoclast number (N.Oc), osteoclast surface (Oc.S), and bone
surface (BS), with the size of the osteoclast (Oc.S/BS) and the
fraction of bone surface with osteoclasts adhered (Oc.S/BS)
examined. All histomorphometry was performedwith BIOQUANT
measure 32 Nova Prime (Nashville, TN, USA).

Statistical analysis

Statistical analysis of strain gauge data between mouse
genotypes was performed using non‐parametric Mann‐Whitney
U test. Remaining statistical assessment between genotypes was
performed using parametric independent sample t‐test with
a 95% confidence interval. Analysis of contralateral tibiae was
performed using parametric paired samples test with a 95%
confidence interval. Comparison of the effect of loading/
unloading treatment between genotypes was analyzed via

Fig. 1. A 7.8mm VOI of the tibia starting 0.5mm below the proximal growth plate was assessed. Sub‐regional analysis was performed in 3 VOIs. VOI 1
(Metaphyseal CancþCort) represents metaphyseal bone with 1.2mm height starting 0.5mm below the growth plate. The Cortical and Cancellous bone
compartments of this VOI were analysed separately and together. VOI 2 (37% Cortical) and VOI 3 (50% Cortical) represents diaphyseal cortical bone in two
0.5mm height VOIs situated 37% and 50% down from the proximal tibia.
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general linear analysis using univariate analysis of variance. For
all testing a value of p< 0.05 was considered significant. All
analysis was performed using IBM SPSS Statistics 20 (SPSS Inc.,
Chicago, IL, USA).

Results

Sclerostin deficiency prevents bone loss caused by
unloading

Localized muscle wastage was evident following BTX treatment,
with 26% decreases in weight of wild type and Sost�/� BTX‐
treated hind limbs versus their contralateral controls (p< 0.01,
Fig. 2A). There were no differences in hind limb weight between
genotypes when comparing treated hind‐limbs only, or control
hind limbs only.
Prior to BTX treatment the tibiae intended for unloading

(right tibiae) of the wild type mice had significantly greater BMD
within the metaphysis than contralateral control (left) tibiae, as
measured by DXA (Fig. 2B); likely due to manual positioning of
ROIs for analysis. However, the response with unloading in wild
type mice was such that metaphyseal BMD was significantly
reduced (�8%) by day 14, compared to control tibiae (p< 0.01).
In contrast, longitudinal assessment by DXA in Sost�/� mice
showed no significant change between the unloaded and

control limbs in metaphyseal BMD at any time point. Percent
change in BMD from day 0 was not related to body weight
changes for the unloaded tibiae (Fig. S1). Metaphyseal BMC by
DXA trended in response to unloading in a similar manner as
BMD for wild type and Sost�/� mice (data not shown). MicroCT
confirmed decreased bone volume with unloading in the wild
type mice (�5%, p< 0.01, Fig. 2C), but there was no significant
difference between the Sost�/� unloaded and contralateral
tibiae. The BV change along the tibiae of wild type and Sost�/�
mice was demonstrated in a histogram (Fig. 2D).

Sub‐regional microCT analyses were performed (Tables 1
and 2). In unloaded wild type tibiae, metaphyseal bone volume
decreased 9% compared to the control limb (p< 0.01). This
decreased metaphyseal BV was within both cortical (�7%,
p< 0.05) and cancellous (�20%, p< 0.01) bone. Cortical
thickness (�10%, p< 0.01) and cortical TMD (�3%, p< 0.05)
were also significantly decreased with unloading. This cortical
bone loss in response to unloading appeared to be primarily on
the endosteal surface with an increase in the endosteal
perimeter (4%, p< 0.01) and also an increase in TV of the
cancellous region (9%, p< 0.01). Cancellous BV/TV (�25%), Tb.N
(�17%), and TMD (�8%) were all significantly decreased
(p< 0.01). The mid‐diaphysis showed similarly a loss of bone
in response to unloading. The two mid‐diaphyseal VOIs showed
significant decreases (between�5% and�8%) in BV and cortical

Fig. 2. Control and unloaded tibiae ofWT (wild type) and Sost�/�mice: (A) End pointweight of control and BTX‐treated hind limbs: tibia, fibula, femur and
muscle, excluding skin and feet; (B) DXAmeasuredmean bonemineral (BMD) of the tibial metaphysis at days 0, 7, and 14. Bars represent� SD; (C) MicroCT
measured mean bone volume, within the 7.8mm VOI of the tibiae. Bars representþ SD; (D) Bone volume change between unloaded and control tibiae
along the 7.8mm VOI. 1–3. Localities of sub‐regional VOIs: 1. Metaphyseal VOI, 2. 37% Cortical VOI, 3. 50% Cortical VOI. ��p< 0.01.
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thickness with unloading in the wild type tibiae (p< 0.01). In the
37% cortical VOI, the endosteal perimeter was significantly
increased (7%, p< 0.05), suggesting localized widening of the
marrow cavity at this region.

In the Sost�/� unloaded tibiae a statistically significant but
small (�3%) decrease in cortical thickness was seen in the 50%
cortical VOI (p< 0.05). This decrease did not translate into
changes on any other bone parameters, for either the 50% or
37% cortical VOIs.

Dynamic histomorphometry of control wild type and Sost�/�
tibiae indicated that bone formation in the metaphysis of
Sost�/�mice approached that of wild type mice by 12 weeks of

(Fig. 3). Further, unloading did not alter any of these bone
formation parameters in wild type or Sost�/� mice, suggesting
bone formation was not the major responder to decreased
loading. However, no changes were seen in N.Oc, Oc.S/N.Oc, or
Oc.S/BS with unloading compared to control tibiae for wild type
and Sost�/� mice, suggesting no unloading‐related changes in
osteoclast size or the fraction of bone surface with osteoclasts
adhered. Wild type control and unloaded tibiae did have
significantly greater Oc.S/BS compared to Sost�/� control and
unloaded tibiae (p< 0.01). This difference is likely due to a
greater bone surface in the Sost�/� mice as N.Oc was not
changed between the mouse strains or treatment.

Table 1. Metaphyseal Bone Parameters Measured by MicroCT for Strain‐Matched (1200me) Loading and Unloading Studies

Metaphyseal
VOI Parameters

Loading Study Unloading Study

WT Sost�/� WT Sost�/�
Control Loaded Control Loaded Control Unloaded Control Unloaded

CancþCort TV (mm3) 3.03� 0.15 3.31� 0.18a 3.30� 0.20 3.78� 0.25a 3.05� 0.14 3.09� 0.16 3.34� 0.19 3.44� 0.24b

BV (mm3) 1.74� 0.12 1.94� 0.11a 2.35� 0.17 2.85� 0.21a 1.63� 0.10 1.49� 0.08a 2.32� 0.18 2.34� 0.19
Cancellous TV (mm3) 1.36� 0.08 1.42� 0.13 1.28� 0.09 1.21� 0.10a 1.49� 0.06 1.62� 0.10a 1.44� 0.09 1.51� 0.12

BV (mm3) 0.23� 0.04 0.23� 0.07 0.48� 0.09 0.42� 0.10b 0.25� 0.05 0.20� 0.03a 0.56� 0.06 0.60� 0.11
BV/TV (%) 16.91� 2.96 16.25� 4.16 37.10� 4.93 34.54� 6.15b 16.50� 3.33 12.45� 1.44a 38.53� 3.26 39.48� 5.77
Tb.Th (mm) 0.09� 0.00 0.10� 0.00a 0.14� 0.04 0.13� 0.01 0.08� 0.00 0.08� 0.00a 0.12� 0.00 0.12� 0.01
Tb.Sp (mm) 0.27� 0.03 0.28� 0.03 0.22� 0.06 0.22� 0.03 0.25� 0.02 0.25� 0.01 0.17� 0.01 0.17� 0.02
Tb.N (mm�1) 1.90� 0.28 1.61� 0.35b 2.81� 0.56 2.63� 0.38 1.98� 0.32 1.65� 0.17a 3.17� 0.20 3.32� 0.42
TMD (g/cm3) 0.64� 0.03 0.68� 0.03a 0.80� 0.04 0.82� 0.04 0.64� 0.03 0.59� 0.02a 0.89� 0.18 0.83� 0.05

Cortical BV (mm3) 1.51� 0.09 1.70� 0.08a 1.87� 0.12 2.42� 0.20a 1.38� 0.08 1.29� 0.09b 1.75� 0.16 1.75� 0.16
Ct.Th (mm) 0.24� 0.01 0.26� 0.01a 0.30� 0.1 0.37� 0.02a 0.21� 0.01 0.19� 0.01a 0.26� 0.02 0.26� 0.02
Ps (mm) 7.10� 0.28 7.33� 0.22a 7.22� 0.25 7.56� 0.29a 7.31� 0.26 7.22� 0.24 7.47� 0.24 7.46� 0.16
Ec (mm) 5.61� 0.24 5.73� 0.29 5.45� 0.32 5.41� 0.40 5.97� 0.22 6.18� 0.20a 5.94� 0.28 6.20� 0.32
TMD (g/cm3) 1.31� 0.04 1.35� 0.05 1.46� 0.02 1.49� 0.03a 1.27� 0.04 1.23� 0.04b 1.43� 0.04 1.43� 0.06

n 10 10 10 10 10 10 10 10

ap< 0.01.
bp< 0.05 compared to contralateral control.

Table 2. Diaphyseal Bone Parameters Measured by MicroCT for Strain‐Matched (1200me) Loading and Unloading Studies

Diaphyseal VOI Parameters

Loading Study Unloading Study

WT Sost�/� WT Sost�/�
Control Loaded Control Loaded Control Unloaded Control Unloaded

37% Cortical BV (mm3) 0.55� 0.03 0.64� 0.03a 0.74� 0.05 0.88� 0.05a 0.50� 0.02 0.47� 0.02a 0.68� 0.06 0.68� 0.06
Ct.Th (mm) 0.26� 0.01 0.30� 0.01a 0.34� 0.00 0.39� 0.01a 0.24� 0.01 0.22� 0.00a 0.31� 0.01 0.31� 0.02
Ps (mm) 5.84� 0.26 6.14� 0.25a 6.06� 0.29 6.34� 0.29a 5.75� 0.19 5.68� 0.27 5.94� 0.33 5.95� 0.26
Ec (mm) 3.66� 0.14 3.74� 0.22 3.51� 0.26 3.69� 0.45 3.85� 0.23 4.11� 0.27b 3.95� 0.42 3.96� 0.30
MMI(polar) (mm4) 0.48� 0.06 0.60� 0.07a 0.67� 0.10 0.87� 0.11a 0.42� 0.03 0.41� 0.06 0.61� 0.10 0.62� 0.09
TMD (g/cm3) 1.47� 0.03 1.48� 0.04 1.56� 0.03 1.59� 0.02a 1.39� 0.04 1.39� 0.07 1.52� 0.03 1.52� 0.04

50% Cortical BV (mm3) 0.41� 0.02 0.49� 0.03a 0.60� 0.04 0.68� 0.05a 0.38� 0.01 0.36� 0.02a 0.56� 0.03 0.55� 0.03
Ct.Th (mm) 0.28� 0.00 0.32� 0.02a 0.37� 0.00 0.41� 0.01a 0.26� 0.00 0.24� 0.00a 0.36� 0.01 0.35� 0.01b

Ps (mm) 4.10� 0.16 4.42� 0.17a 4.66� 0.25 4.85� 0.22b 4.13� 0.14 4.05� 0.17 4.48� 0.23 4.51� 0.24
Ec (mm) 2.23� 0.12 2.31� 0.23 2.31� 0.36 2.29� 0.45 2.48� 0.19 2.50� 0.15 2.45� 0.33 2.35� 0.20
MMI(polar) (mm4) 0.19� 0.03 0.25� 0.03a 0.31� 0.05 0.37� 0.06a 0.17� 0.02 0.17� 0.02 0.28� 0.04 0.28� 0.03
TMD (g/cm3) 1.65� 0.03 1.64� 0.05 1.73� 0.04 1.74� 0.02 1.52� 0.05 1.53� 0.06 1.66� 0.04 1.67� 0.04

n 10 10 10 10 10 10 10 10

ap< 0.01.
bp< 0.05 compared to contralateral control.
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Variation of bone strain in Sclerostin deficient mice

The Sost�/� tibiae showed a trend toward increased stiffness
under the same compressive cyclic loading force compared to
wild type control mice. While this difference did not reach
significance (p¼ 0.09, Fig. 4), a post hoc power analysis indicated
based on the effect size (Cohen d value¼ 1.24) that the observed
power (b) was 0.32. Based on the high effect size both strain
matched and force matched experiments were carried out. For
strain‐matched experiments, the Sost�/� and wild type mice
received �12.5 N and �9.0 N force, respectively, to induce
equivalent strains of 1200me on the mid‐diaphysis of the tibiae.
For force matched experiments, separate groups of Sost�/� and
wild type mice received �9.0N loading.

Sclerostin deficiency results in increased load‐induced
bone formation

Prior to loading (day 0) the relative BMD of wild type tibial mid‐
diaphyses intended for loading (left tibiae) was less than that of
the contralateral controls (right tibiae) (p< 0.05) as measured by
DXA (Fig. 5A); likely due to manual positioning of ROIs for
analysis. However, the response of strain‐matched loading by
day 14was a significant increase in diaphyseal BMD over controls
(16%, p< 0.01). No difference in BMDwas seen at day 0 between
the loaded/contralateral Sost�/� tibiae by DXA (Fig. 5A).
Notably, diaphyseal BMD was significantly increased in the
strain‐matched Sost�/� mice following loading (11% at day 7,
23% at day 14; p< 0.01). Change in BMD over the study period

was not related to body weight changes (Fig. S1). Diaphyseal
BMC trended similarly to BMD in wild type and Sost�/�mice by
DXA (data not shown).

Loading‐induced increases in BV was confirmed by MicroCT in
wild type and Sost�/�mice at day 14 (p< 0.01, Fig. 5B). The 20%
BV increase in strain‐matched Sost�/� tibiae was significantly
greater than the 15% BV increase in wild type tibiae (p< 0.01).

Fig. 3. Histomorphometric analysis of unloaded and control wild type (WT) and Sost�/� tibiae within metaphyseal cancellous bone. MS/BS, mineralizing
surface/bone surface; MAR, mineral apposition rate/day; BFR/BS, bone formation rate/bone surface; N.Oc, osteoclast number; Oc.S/N.Oc, osteoclast
surface/osteoclast number; Oc.S/BS, osteoclast surface/bone surface. Bars representþ SD, n¼ 8–10 per group. ��p< 0.01, �p< 0.05.

Fig. 4. Mean stiffness of wild type (WT) and Sost�/� tibiae measured by
strain gauging of the mid‐diaphysis. Sost�/� tibiae trended toward
being stiffer thanWT controls (p¼ 0.09). Bars represent� SD, n¼ 4–5 per
group.
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These BV increases were constant along the 7.8mm diaphyseal
region that was analyzed (Fig. 5C). Similar BMD and bone volume
responses to loading were also seen in the load‐matched study
for the Sost�/� mice (Fig. 6). This confirmed that the response
to loading in the Sost�/� mice was not only a result of the
increased load applied in the strain‐matched study.

As strain engendered on the bone, rather than an external
load, correlates with mechanotransduction responses,(35–38)

further microCT sub‐regional analysis was performed for the
strain‐matched loading cohort of mice. Within the metaphysis
effects with loading were similar in the wild type and Sost�/�
mice (Table 1). BVwas increased in the loaded tibiae compared to
their contralateral controls, but only within the cortical bone
compartment (p< 0.01). The 29% increase in Sost�/� cortical BV
was significantly greater than the 13% increase in WT tibiae
(p< 0.01). The cortical thickness of this metaphyseal sheath was
increased for both wild type and Sost�/� loaded tibiae, due to
increases in their periosteal perimeters (p< 0.01). A small 2%
TMD increase was seen in the Sost�/� loaded metaphyseal
cortex only (p< 0.01). No change in BV or BV/TV was seen in
the cancellous metaphyseal bone of the wild type mice, while
Sost�/� mice had a significant decrease in cancellous BV and
BV/TV with loading (�13% and �7%, p< 0.05). However, TV of
the cancellous compartment was also 5% decreased in the

Sost�/� loaded mice (p< 0.01), suggesting a shift toward
cortical bone within the metaphyseal VOI of the Sost�/� tibiae.

The cortical bone within the two mid‐diaphyseal VOIs (37%,
50% along the tibiae, respectively) showed similar results to the
metaphyseal cortical bone (Table 2). There were significant
increases seen in BV (17%, 19% wild type; 19%, 13% Sost�/�),
Ct.Th (16%, 17% wild type; 16%, 10% Sost�/�), and periosteal
perimeter (5%, 8% wild type; 5%, 4% Sost�/�) (p< 0.01),
suggesting periosteal expansion. These resulted in increased
MMI(polar) in both wild type (26%, 30%) and Sost�/� (30%, 20%)
loaded tibiae compared to their contralateral controls (p< 0.01).
A small 2% increase in TMD was seen within the 37% VOI for
Sost�/� loaded tibiae only (p< 0.01).

Dynamic histomorphometry of non‐loaded control tibiae of
the wild type and Sost�/�mice indicated that bone formation in
the mid‐diaphysis of Sost�/�mice approached that of wild type
mice by 12 weeks of age (Fig. 7). Within the metaphyseal
cancellous bone MS/BS, MAR and BFR/BS were not different
between the genotypes. Within the mid‐diaphysis (37% cortical
ROI) MS/BS was significantly increased in the Sost�/� control
tibiae compared to wild type control (p< 0.01), but MAR and
BFR/BS were not different between the genotypes on either the
periosteal or endosteal surfaces. Comparable findings were
noted at the mid‐diaphyseal 50% cortical ROI (data not shown).

Fig. 5. Control and strain‐matched (1200me) loaded tibiae of WT (wild type) and Sost�/�mice: (A) DXAmeasuredmean bone mineral (BMD) of the tibial
diaphysis at days 0, 7, and 14. Bars represent� SD; (B) MicroCT measured mean bone volume, within the 7.8mm VOI of the tibiae. Bars representþ SD;
(C) Bone volume change between loaded and control tibiae along the 7.8mm VOI. 1–3. Localities of sub‐regional VOIs: 1. Metaphyseal VOI, 2. 37%
Cortical VOI, 3. 50% Cortical VOI. ��p< 0.01
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Periosteal and endosteal responses were both seen with
loading of wild type and Sost�/�mice. On the periosteal surface,
MS/BS, MAR, and BFR/BS were all significantly increased
compared to the contralateral control tibiae (p< 0.01). The
MAR and BFR/BS response was greater in Sost�/�mice thanwild
type (p< 0.01). Endosteal MAR (p< 0.01) and BFR (p< 0.05) were
also significantly increased for wild type and Sost�/� mice.
However, MS/BSwas decreased on this surface for both wild type
(p< 0.01) and Sost�/� loaded tibiae (p< 0.05).

Discussion

This study comprehensively investigates the response of the
Sost�/� mouse line to increased cyclic loading and Botox‐
induced unloading. Sclerostin plays a major role in mechano-
transduction in bone. Acute and chronic Sclerostin deficiency
can prevent bone loss associated with reduced loading(25,26) and
upregulation of Sclerostin can prevent increases in bone volume
associated with increased loading.(27) We hypothesized that the
response of bone tomechanical loading and unloadingwould be
significantly impaired in the absence of Sclerostin, in comparison
to C57Bl/6J wild type controls.

Contrary to our initial hypothesis, Sost�/� mice responded
positively to a cyclic load protocol; cortical bone volume
increased significantly in both Sost�/� and control mice and
correlated with increased bone formation. While Sclerostin has
been identified as a key factor in the anabolic response of bone
to load, our results indicate an alternative Sclerostin‐indepen-
dent mechanism. While prior findings indicate that Sclerostin
down‐regulation within osteocytes is necessary for bone
response to loading,(27) our data suggest that Sost deficiency
is not sufficient to induce maximal bone anabolism, and that
anabolism can be further increased with mechanical load.
Further, an enhanced bone formation response to increased load
was seen in the Sost�/� tibiae. MAR and BFR/BS responses on
the periosteal mid‐diaphyseal surfaces of the Sost�/� tibiae
were increased compared to the wild type responses. These data
indicate an increased response to strain‐matched loading with
Sost deficiency.

While the anabolic response to load is not dependent on
Sclerostin, unloading‐induced bone loss was attenuated in
Sost�/�mice. This is consistent with the prior literature showing
Sclerostin to be a key modulator of unloading induced bone
loss.(25,26,39) Direct resorption assessment would provide clearer
information of this effect on catabolism, as the osteoclast

Fig. 6. Control and load‐matched (�9.0N) loaded tibiae of WT (wild type) and Sost�/� mice: (A) DXA measured mean bone mineral (BMD) of the tibial
diaphysis at days 0, 7, and 14. Bars represent� SD; (B) MicroCT measuredmean bone volume, within the 7.8mm VOI of the tibiae. Bars representþ SD; (C)
Bone volume change between loaded and control tibiae along the 7.8mmVOI. 1–3. Localities of sub‐regional VOIs: 1. Metaphyseal VOI, 2. 37%Cortical VOI,
3. 50% Cortical VOI. ��p< 0.01, �p< 0.05.
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parameters measured only reflect their resorption activity.
However, as bone formation was not effected by unloading
this appears to disregard bone anabolism changes as the primary
response of decrease bone volume with unloading.

These results of loading and unloading regimes in a situation
of long‐term Sclerostin deficiency provide clinically relevant
findings. Human studies of bed‐rest have reported elevated
Sclerostin levels, suggesting that anti‐Sclerostin treatment may
target the mechanism of bone loss.(40,41) These data support the
clinical utility of anti‐Sclerostin therapies for treating boss loss
associated with unloading, such as disuse osteopenia. Further,
the benefit of encouraging exercise/bone loading for individuals
with osteoporosis receiving anti‐Sclerostin therapy is unknown.

These data raise the possibility that exercise may provide an
additive anabolic effect on bone even in the presence of
Sclerostin blockade. However, this hypothesis will need to be
validated via controlled clinical studies.

The Sclerostin‐independent bone response to increased load
indicates the involvement of other factors in bone mechano-
transduction. Other inhibitors of the canonical Wnt/b‐catenin
signaling pathway may have a role in mechanotransduction,
acting along‐side Sclerostin or taking up such a role where
Sclerostin is deficient. Such compensation may be the cause of
the comparable metaphyseal and diaphyseal bone formation
parameters between Sost�/� and wild type control tibiae at
12 weeks age. A key candidate is Dkk1 which is up‐regulated in

Fig. 7. Histomorphometric analysis of strain‐matched (1200me) loaded and control wild type (WT) and Sost�/� tibiae within the diaphyseal 37% Cortical
VOI. (A) Periosteal and endosteal surfaces were analysed for: MS/BS, mineralizing surface/bone surface; MAR mineral apposition rate/day; BFR/BS, bone
formation rate/bone surface. Bars representþ SD, n¼ 8–10 per group. ��p< 0.01, �p< 0.05. (B) Representative images of Calcein bone labeling.
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the Sclerostin knock‐out mouse and within van Buchem and
Sclerosteosis patients.(28,29) Elevated Dkk1 levels within the bone
compartment could down‐regulate in response to increased
load, leading to increased Wnt/b‐catenin signaling and bone
formation. Further, a more intricate system independent of, or in
synergy with, the Wnt/b‐catenin pathway may be involved in
bonemodulation. Factors of interest include estrogen receptor a
(ERa), insulin‐like growth factor 1 (IGF‐1), parathyroid hormone
(PTH), leptin, prostanoids, PGE2, connexin 43, interleukin‐11, and
bone morphogenetic proteins (BMPs).(30,42–47)

Future work investigating other potential mechanotransduc-
tion modulators is required. Such prospective modulators may
be highlighted by gene and protein expression analysis
following loading/unloading and also studies of longer load-
ing/unloading periods. In particular, prolonged unloading in a
Sclerostin deficient system has not been studied in detail and
compensatory responses may emerge with longer unloading.
Moreover, investigation of models that feature deficiency in
multiple Wnt pathway regulators may reveal compensation or
synergy with Sclerostin, or suggest modulators outside the Wnt
pathway.
Bone volume was increased in diaphyseal and metaphyseal

cortical bone of wild type and Sost�/� mice. The metaphyseal
bone response was greater in the Sost�/� tibiae than the wild
type tibiae, and could reflect site‐specific differences in
mechanical strain induced on the two genotypes. The strains
induced when loading the Sost�/� and wild type bones were
measured and calibrated, but only the diaphyseal strains could
be concluded as equivalent. Differences in bone volume,
stiffness, and geometry between the genotypes may affect the
strain engendered within the metaphysis. However, bone
compartment specific responses to changes in Wnt/b‐catenin
signaling are known and may support the site‐specific responses
seen in the Sost�/� tibiae as true effects.(28,39)

An anabolic bone response to loading was not seen within
metaphyseal cancellous bone of either Sost�/� or wild type
mice. Further, the overall tissue volume of the metaphyseal
cancellous region was reduced in the Sost�/� mice. These data
suggest a generalized corticalization of the Sost�/�metaphysis
in response to increased loading.
The lack of an anabolic cancellous response is in contrast to

other similar loading regimes within the literature,(32–34,48) likely
due to the age of the mice used, the mechanical strain
engendered, or the VOIs selected. An age‐dependent response
of cancellous bone to loading has been shown, particularly when
comparing growing mice versus adult mice.(48) Further, studies
with a cancellous bone response in C57Bl/6 mice, of comparable
age and loading regimes as our investigation, were either loaded
to induce a higher tibial mid‐shaft strain, or were measured with
more rudimentary VOIs.(32–34) These VOIs were cylinder volumes
positionedwithin themarrow space of themetaphysis, providing
only a representative examination of the cancellous bone.
Our study provided a more expansive investigation. This does
highlight the challenge of comparing results of published
loading/unloading studies, with no commonly accepted stand-
ards for analysis. Other variables such as sex, loading period/
regime, and mouse strain may also be responsible for
inconsistencies in wild type responses within the literature. Of
particular note, with emerging evidence of ERa involvement in
mechanotransduction, there may be gender specific effects
confounding comparisons.(30,44)

Some limitations existing within this study are worth note.
Littermate controls, unavailable to us, would have provided

optimal controls. Back‐crossing of founder Sost�/� mice, of
99.09% isogenicity/identity to the C57BL/6J strain, supports
minimum strain differences; however, genetic drift between the
two colonies cannot be completely discounted. Further, age‐
matched non‐treated mice would provide rigorous baseline
controls, confirming contralateral tibiae as suitable controls.
There is the potential for compensation by control limbs
following treatment of the contralateral limbs, particularly in
the BTX model. Previous murine unloading studies utilising BTX
to induce hind‐limb disuse have shown moderate systemic
effects resulting in a lowering of bone mass in the contralateral
(non‐treated) tibiae compared to baseline controls, likely a result
of reduced activity.(49,50) However, this does not discount the
comparative effect of unloaded tibia.

Despite these limitations, this study presents a direct
comparison of increased and decreased load responses in
Sclerostin deficient bone and provides novel information about
the role of Sclerostin in mechanotransduction. Although
Sclerostin loss‐of‐function offers protection from unloading
induced bone loss, it does not prevent bone gain in response to
increased load but rather results in an increased bone formation
response. Thus, while Sclerostin may be involved in bone
mechanotransduction, it is not the sole modulator of the loading
response. Future work is required to elucidate other factors that
are essential for sensing and transducing mechanotransduction
signals in response to bone load.
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ABSTRACT  

A viable Dkk1 knockout (KO) mouse strain where embryonic lethality is rescued by developmental 

Wnt3 heterozygosity (Dkk1-/-:Wnt3+/-) exhibits increased bone formation and a high bone mass 

phenotype. We hypothesized that biomechanical loading would further augment the bone 

formation response in Dkk1 KO mice, comparable to results from Sost KO mice.  

A cyclic loading protocol was applied to Dkk1 KO mice, wild type mice (WT; Dkk1+/+:Wnt3+/+), 

and Wnt3 heterozygote (Wnt3+/-; Dkk1+/+:Wnt3+/-) controls. The left tibiae of 10 week old female 

mice were loaded in vivo with -7N compressive force 5 days/week for 2 weeks. Dkk1 KO bones 

showed a significantly higher stiffness and so an additional group of Dkk1 KO received -12N 

compressive force, which achieved an equivalent +1200µ strain on the mid-diaphysis. MicroCT 

and bone histomorphometry analyses were subsequently performed.  

All mouse groups responded to tibial loading with increased mid-diaphyseal bone volume, with 

the largest effect size seen in the Dkk1 KO -12N group. Thus Dkk1 KO animals showed enhanced 

sensitivity to biomechanical loading. Increases in cortical bone volume correlated with increased 

periosteal bone formation. Bone volume and formation were not altered between WT and Wnt3+/-

controls. These data support the concept that agonists of Wnt/β-catenin signaling can act 

synergistically with load-bearing exercise. Notably, Sost expression decreased with loading in 

Dkk1 KO and WT genotypes, however did not significantly differ based on genotype. These data 

suggest that a compensatory downregulation of Sost in Dkk1 KO mice is not likely to be the 

primary mechanism for the augmented response to biomechanical load. 

 

 

Keywords: Dkk1, mechanotransduction, bone loading, Wnt, bone anabolism.  

Abbreviations: WT (wild type), Dkk1 KO (Dkk1-/-:Wnt3+/-)  
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INTRODUCTION 

Bone is mechanosensitive with bone mass increasing in response to dynamic loading and 

decreasing with disuse (1). This has been displayed in animal models of increased and decreased 

mechanical load and in clinical studies (2-6). Mechanotransduction describes the cell signaling 

and effector biological response that occurs as a result of mechanical force applied to the bone 

compartment (7). Understanding and harnessing this process will be important in furthering our 

capacity to treat diseases involving low bone mass and/or uncoupled bone remodeling.  

Though the processes of cellular signaling involved in bone mechanotransduction have yet to be 

fully elucidated, it is likely that multiple intersecting pathways are involved (8-11). Amongst these 

signaling pathways, Wnt/β-catenin signaling has emerged as being highly modulated by loading 

and unloading (12-15). Intact Wnt/β-catenin signaling, with a minimal threshold of β-catenin 

expression, is necessary for the bone anabolic response to mechanical loading (16). Moreover, 

increased activation of the Wnt/β-catenin pathway caused by deficiency in the Wnt antagonist 

sclerostin augments the bone to dynamic loading. Both sclerostin-deficient (Sost-/-) mice and 

C57Bl/6 mice treated with a neutralizing anti-sclerostin antibody show increases in cyclic loading-

induced bone formation that are enhanced compared to wild type/untreated mice (17, 18). These 

data further support the concept that in addition to Wnt/β-catenin other, as yet undefined, signaling 

pathways regulate mechanotransduction in these models. 

Dickkopf WNT Signaling Pathway Inhibitor 1 (dickkopf-1/DKK1) is a soluble protein expressed 

and secreted within the bone microenvironment (14), and has a modulating role within the bone 

compartment. Overexpression of Dkk1 within osteoblasts results in osteopenia in mice (19-21). 

Heterozygous and homozygous deletion of Dkk1 results in a dose dependent increase of bone mass, 

due to an increase in bone formation and no alteration of bone resorption (22-24). Like sclerostin, 

DKK1 has a role within bone mechanotransduction. In particular, a suppression of both sclerostin 

and DKK1 expression is seen following an increase in mechanical bone loading within rodent 

models (14, 15, 25).  

It was hypothesized that, as seen with sclerostin deficiency (17, 18), a loss of DKK1 could also 

augment the anabolic response of bone to increased mechanical loading. Neutralizing antibodies 

to DKK1 have been developed and such antibodies have been validated to augment bone 
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anabolism via increasing osteoblast-driven bone mass (26, 27). As with anti-sclerostin antibodies, 

anti-DKK1 antibodies may have clinical utility in promoting increased bone mass, however the 

interaction of these bioactive agents with load-based exercise remains ill-defined.  

We aimed to investigate the effect of DKK1 deficiency on the anabolic response of bone to 

increased mechanical loading. This study utilized a unique mouse model of Dkk1 deficiency where 

embryonic lethality is prevented by developmental knockdown of Wnt3 expression. One challenge 

with analyzing this model is that the high bone mass phenotype considerably affects bone stiffness. 

There is no gold standard for the biomechanical loading of bones, with groups currently debating 

whether force-matched or strain-matched controls are more relevant. In this study, two groups of 

Dkk1 KO mice were loaded with identical forces or strains and compared versus wild type (WT) 

and Wnt3+/- controls. Bone volume and formation changes were examined within the mid-

diaphysis using a combination of radiographic and dynamic histomorphometry outcome measures. 

Potential compensatory effects of sclerostin in the absence of DKK1 were assessed by quantitative 

PCR. 
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METHODS AND MATERIALS 

Dkk1 knockout mice 

A Dkk1-/-:Wnt3+/- mouse colony was gifted by Prof. Patrick Tam and was used and maintained on 

its original mixed 129J×C57Bl/6 background (28). The original cross was generated by breeding 

Wnt3+/- and Dkk1+/- strains with a further generation of Dkk1+/- backcrossing (29, 30). Wild type 

(WT; Dkk1+/+:Wnt3+/+) and Wnt3 knockdown (Wnt3+/-; Dkk1+/+:Wnt3+/-) mice were sourced from 

the Wnt3+/- × Dkk1+/- cross colony. Animal experiments were approved and performed under the 

Western Sydney LHD Animal Ethics Committee, protocol 4174.  

Animals were bred in house at the Westmead Animal Holdings facility. Mice were given access 

to rodent chow and water ad libitum, and were housed with littermates with a maximum of 4 

mice/cage. Genotyping was performed on DNA from ear punches using DirectPCR (Viagen 

Biotech, Los Angeles, CA, USA). PCR reactions were performed for the Dkk1 wild type gene, the 

Dkk1 neo mutant allele and the Wnt3 allele (29, 30).  

For control mice that did not undergo loading protocols, tibiae from N=6-8 female mice of each 

genotype were collected for radiographic assessment at 12 weeks of age.  

 

Tibial mid-diaphyseal strain gauging 

Strain gauging of the mid-diaphysis was performed on the right and left tibiae for all genotypes 

(4-5 mice/genotype). Strain (bone tissue deformation) levels at the mid-diaphysis was measured 

in 10 week old female mice as previously described (17, 31, 32). Briefly, mice were anesthetized 

via isoflourane inhalation and a small incision made in the skin at the anterior tibia, half way down 

the bone. Muscle and periosteum were scraped away to expose the diaphysis, and the bone was 

cleaned and dried with a swab of methyl ethyl ketone. A miniature single element strain gauge 

(EA‐06‐015LA‐120, Vishay Micromeasurements, NC, USA) was attached to the medial mid-

diaphysis aligned with the bone’s longitudinal axis. The limb was placed into a custom made 

loading apparatus so that the heel and knee were cupped and held securely. A range of cyclic axial 

compressive loads (-3N to -13N) were applied using 4Hz haversine waveform. No tibial failures 
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occurred with this load range. The strain at each load increment was recorded (National 

Instruments, Labview v8.2). Mice were euthanized following all measurements.  

 

Cyclic tibial loading 

Commencing on D1, 10 week old female Dkk1 KO, WT, and Wnt3+/- mice (N=7-8/genotype) 

underwent unilateral cyclic axial compression of the left tibia, as described by Melville et al. (33). 

Briefly, 1200 cycles were applied daily, 5 days/week for 2 weeks, with rest days on D6, D7, D13, 

and D14. The loads applied for Dkk1 KO (-12.0N), WT (-7.0N), and Wnt3+/- (-7.0N) mice achieved 

+1200µe on the mid-shaft. A separate group of Dkk1 KO mice also received -7.0N of load to 

directly compare force-matched responses between the genotypes. Mice were euthanized at D15 

(12 weeks age) for assessment of macroscopic bone parameters, such as bone volume, density, 

microarchitecture, and dynamic bone histomorphometry. Mice were injected with calcein 

(10mg/kg, Sigma-Aldrich, MO, USA) at 3 and 10 days before euthanasia. Bones were fixed in 

10% formalin for 24hrs (3hr room temperature, then the remainder at 4°C) then stored in 70% 

ethanol. 

 

Microcomputed tomography 

Right and left tibiae were measured ex vivo by microcomputed tomography (microCT; Skyscan 

1174 2; Skyscan NV, Kontich, Belgium) using 12 μm isotropic voxel resolution, 0.5 mm 

aluminium filter, 50 kV X-ray tube voltage, 800μA tube electric current, and 4500ms exposure 

time. Images were reconstructed using a scale of 0-0.1 (NRecon version 1.6.1.7; Skyscan NV) and 

analyzed using CTAnalyser (Skyscan NV). The minimum threshold for bone was 0.4 g/cm3, 

correlated to phantoms of known density. All microCT analysis excluded the fibula. A total of 

N=5 tibiae were excluded from microCT analysis as images showed poor focus.  

A volume of interest (VOI) denoted “7.8 mm VOI” was selected, commencing 0.5mm below the 

growth plate and finishing 7.8 mm distally, proximal to the tibia-fibula joint (Fig 1A). Consecutive 

VOIs of height 0.06 mm were assessed along the 7.8 mm VOI and plotted on a histogram to 

visualize bone volume change following loading (loaded BV-control BV) for all genotypes.  
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Sub-regional analysis was performed within the diaphysis (Fig 1A).  A VOI of height 0.5 mm was 

assessed commencing 37% down the tibia from the proximal end. This VOI corresponds with other 

published studies that examine the response to increased load in the tibia (17, 18, 31, 34-36). It 

also provides regional analysis of bone that received the same strain. A second VOI of the same 

height but 50% down the tibia was also analyzed to provide additional analysis of the strain-

matched region, and results are supplied as supplementary data. Bone parameters assessed 

included cortical BV, cortical thickness (Ct.Th), tissue mineral density (TMD) and polar moment 

of inertia (J), a geometric predictor of whole bone strength. Representative (median BV) three-

dimensional (3D) reconstructions were created using CTAnalyser. 

Sub-regional of the metaphysis was also performed. A VOI of height 1.2 mm commencing 0.5 

mm below the growth plate was selected to represent the secondary spongiosa (Fig 1A). Within 

this metaphyseal VOI both cancellous bone and cortical bone were assessed separately and 

together as a total bone VOI, as seen before (17). Bone parameters assessed within cancellous 

VOIs were BV, tissue volume (TV), trabecular bone volume/total volume (BV/TV), and tissue 

mineral density (TMD), as well as microarchitecture parameters of trabecular thickness (Tb.Th), 

number (Tb.N) and separation (Tb.Sp). 

 

Dynamic bone histomorphometry 

The tibiae were transversely cut using a diamond saw at the region of interest (ROI) within the 

tibial mid-diaphysis: 37% from the proximal end of the tibiae. The cross-sectional surface was 

smoothed using sand paper with grit designation of P1200 and cleaned in 70% ethanol. Samples 

were placed with the cross-sectional area of interest facing flat down on a plastic dish in 70% 

ethanol. The entire cross-sectional area was scanned and imaged using Leica TCS SP5 confocal 

microscope at 20x magnification (Leica Microsystems, NSW, Australia). The exposure time, z-

stack, gain and offset remained consistent for all specimens. The endosteal and periosteal surfaces 

of each cross-sectional sample were analyzed for daily mineral apposition rate (MAR), 

mineralizing surface/bone surface (MS/BS) and bone formation rate/bone surface (BFR/BS) using 

BIOQUANT measure 32 Nova Prime (Nashville, TN, USA). Diaphyseal dynamic bone measures 

from a transverse tibial ROI 50% down the bone are supplied as supplementary data. 
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RNA extraction and quantitative reverse-transcription polymerase chain reaction 

At 10 weeks age, an additional 23 mice (N=9 WT, N=14 Dkk1 KO) underwent two days of strain-

matched cyclic axial compression of the left tibia under the same conditions as the mice for 

radiographic/bone formation assessment. WT mice received a force of -7.0N, whilst Dkk1 KO 

mice received a force of -12.0N. Euthanasia (cervical dislocation) was 24hrs later on D3. Dissected 

tibiae were cleaned of soft tissue, proximal and distal ends removed to leave the bone shaft, and 

flushed of marrow. The bone shaft was homogenized in Trizol using the Polytron PT2100 

(Kinematica, Lucerne, Switzerland). Total RNA was isolated using chloroform separation and the 

miRNeasy Mini Kit (Qiagen, USA). RNA quality and concentration was verified by Nanodrop 

ND-2000 (Nanodrop Technologies, Delaware, USA). RNA of highest concentration and quality 

(260/280>1.8) was used for reverse-transcription using Superscript II Reverse Transcriptase 

(Thermo-Fisher). Duplicate/triplicate RTs were transcribed, along with a negative RT, for each 

sample. 

Gene expression of Sost was determined on the Rotorgene Gene-Q (Qiagen) using Immolase DNA 

Polymerase (Bioline, London, UK), and normalized to Gapdh. Primers were designed to be intron-

spanning (Sost forward:  5’ TCC TCC TGA GAA CAA CCA GAC 3’; Sost reverse:  5’ TGT CAG 

GAA GCG GGT GTA GTG 3’; Gapdh forward: 5’ TGG TGA AGG TCG GTG TGA AC 3’; 

Gapdh reverse: 5’ ATG GGC TTC CCG TTG ATG AC 3’). Reactions were performed in triplicate 

for each RT. For each condition, 3-5 animals were analyzed. Relative expression was calculated 

using the delta-delta Ct method.  

  

Statistical analysis 

Statistical analysis of stiffness between mouse genotypes from strain gauge testing was performed 

using a one-way ANOVA with LSD post-hoc testing. For microCT and dynamic bone formation 

analyses, the within-subject effect of loading (control, loaded limbs) and the between-subject 

effect of genotype (wild type, Wnt3+/-, Dkk1 KO) as well as the interactions between these terms 

were assessed using a mixed ANOVA. Sub-analyses between genotype groups was performed 
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using one way ANOVA and LSD post-hoc analysis. Analysis of contralateral tibiae (control versus 

loaded within each genotype) was performed using parametric paired samples test with a 95% 

confidence interval. Data assessed and presented are for load related changes within each 

genotype, and genotype related changes within loaded or control tibiae. Mean and standard 

deviation are presented within graphs and tables. Statistical analyses of qPCR analysis was 

performed on ∆Ct values using non-parametric Mann-Whitney U. Mean fold-change and SEM are 

presented within graphs of qPCR results. For all testing a value of p<0.05 was considered 

significant. All analysis was performed using IBM SPSS Statistics 24 (SPSS Inc., Chicago, IL, 

USA) and graphed with GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). 
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RESULTS 

Bone volume is increased with Dkk1 deficiency 

MicroCT analyses of bone volume in non-loaded Dkk1 KO mice confirmed an increase in tibial 

BV at 12 weeks of age compared to non-loaded WT controls (Fig 1B). BV was significantly 

increased within the proximal metaphysis, with 23-24% more BV in Dkk1 KO mice compared 

with WT and Wnt3+/- mice (p<0.01). A small but significant BV increase was seen in Dkk1 KO 

mice compared to Wnt3+/- mice, within the VOI located 50% down the tibiae (+9%, p<0.05). A 

similar BV increase was seen above WT mice (+8%), however was not significant (p=0.06). 

 

Dkk1 KO bones require greater force to achieve identical bone strain 

The relationship between the axial force applied and the strain on the tibial mid-diaphysis was 

determined for each genotype. The Dkk1 KO tibiae demonstrated a 1.7-fold increase in stiffness 

over WT mice, and a 1.8-fold increase over Wnt3+/- control mice, under the same compressive 

cyclic loading force (p<0.01, Fig 2). WT and Wnt3+/- control tibiae had similar stiffness. These 

data were used to calculate the load/force required to achieve +1200µ strain at the tibial mid‐

diaphysis for each of the mouse genotypes. Thus subsequent studies included strain-matched (-

12N) and force-matched (-7N) Dkk1 KO groups.  

 

Increased bone volume response to mechanical loading greater in the Dkk1 KO mouse  

Following tibial loading, microCT was used to assess bone volume changes in a 7.8mm VOI 

running the length of the proximal tibiae. Significant effects were seen for both genotype and 

loading, along with the interaction of the two (genotype:loading) (p<0.01, Fig 3). Sub-analyses 

confirmed baseline data that Dkk1 KO mice had greater BV than WT within non-loaded tibiae (8-

9%, p<0.05). The loading regimen led to significant increases in BV in all genotypes, compared 

to matching contralateral non-loaded tibiae (p<0.01, Fig 3A). The BV increases were however 

greater in the strain-matched Dkk1 KO mice (Dkk1 KO -12N, +30%), than the WT (+8%), Wnt3+/- 

mice (+8%) and the force-matched Dkk1 KO mice (Dkk1 KO -7N, +10%). BV of Dkk1 KO -12N 
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loaded tibiae was significantly greater than the loaded tibiae from all other groups (WT +32%, 

Wnt3+/- +25%, Dkk1 KO -7N +19%, p<0.01). This data suggests that the BV response to loading 

was significantly enhanced within the Dkk1 KO -12N mice. Notably, the BV of the loaded tibiae 

in the force-matched Dkk1 KO mice (-7N) was also significantly greater than WT (+10%, p<0.01, 

Fig 3A). There were no differences in BV between WT and Wnt3+/- loaded tibiae. BV change due 

to loading was visualized by histogram along the 7.8mm VOI and indicate that the BV response 

to load exists along this entire region of the tibiae (Fig 3B). 

Sub-regional analysis of microCT scans provided more insight into bone response within the mid-

diaphysis, which was the zone of known strain (Fig 4). A VOI commencing 37% down from the 

proximal end of the tibiae was assessed. Significant effects within BV (p<0.00001), Ct.Th 

(p<0.001) and polar moment of inertia (p<0.05) were seen for both genotype and loading, along 

with the interaction of the two (genotype:loading) (Fig 4). Sub-analyses showed that all genotypes 

responded to load with increased BV in their loaded tibiae compared to their contralateral tibiae 

(WT +7%, p<0.01, Wnt3+/- +9%, p<0.05, Dkk1 KO -12N +36%, p<0.01, Dkk1 KO -7N +8%, 

p<0.01, Fig 4A). An enhanced loading response was seen within the strain-matched Dkk1 KO (-

12N) mice with significant increases over the loaded tibiae of all other groups (p<0.01). Increases 

were seen in BV (WT +35%, Wnt3+/- +28%, Dkk1 KO -7N +32%), Ct.Th (WT +25%, Wnt3+/- 

+23%, Dkk1 KO -7N +23%), and polar moment of inertia (WT +49%, Wnt3+/- +35%, Dkk1 KO -

7N +43%) for the Dkk1 KO -12N mice. Similar results were seen in the additional mid-diaphyseal 

VOI assessed, 50% down the tibiae (Supplementary Fig 1).  

The tibial proximal metaphysis was also assessed by microCT (Table 1). An effect of loading was 

seen for total metaphyseal TV, BV and TMD (p<0.01). The effect of genotype, and also the 

interaction of genotype:loading was also seen for metaphyseal BV (p<0.01). Sub-analyses showed 

that BV was increased with loading above contralateral non-loaded controls for all groups, and 

this effect was more enhanced within the strain-matched Dkk1 KO mice (WT +11%, Wnt3+/- 

+11%, Dkk1 KO -12N +33%, Dkk1 KO -7N +18%, p<0.01). Overall, BV within the loaded tibiae 

was significantly greater for the strain-matched Dkk1 KO (-12N) mice than all other loaded tibiae 

(p<0.01). Notably BV was also significantly greater in the loaded tibiae of force-matched Dkk1 

KO (-7N) mice compared to WT and Wnt3+/- loaded tibiae (p<0.01).  
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Break-down of the metaphysis into cortical and cancellous bone compartments found significant 

effects in genotype, loading, and the interaction of genotype:loading within cortical BV and 

thickness, and cancellous BV/TV and trabecular thickness (p<0.05, Table 1). This suggests that 

the response to loading was dependent on the group.  

Sub-analyses showed that loading increased cortical BV and Ct.Th within all groups (BV: WT 

+11%, Wnt3+/- +10%, Dkk1 KO -12N +32%, Dkk1 KO -7N +19%, p<0.01; Ct.Th: WT +7% 

p<0.05, Wnt3+/- +10% p<0.05, Dkk1 KO -12N +27% p<0.01, Dkk1 KO -7N +13% p<0.01). Both 

strain-matched and force-matched loading of Dkk1 KO tibiae resulted in significant increases in 

cortical BV over WT and Wnt3+/- loaded tibiae (Dkk1 KO -12N vs WT and Wnt3+/- p<0.01; Dkk1 

KO -7N, vs WT p<0.01, vs Wnt3+/- p<0.05). However, the strain-matched loading of Dkk1 mice 

elicited a greater BV response than force-matched (p<0.01). The cancellous bone saw less marked 

changes between contralateral tibiae following loading (Dkk1 KO -12N: BV/TV and Tb.Th, 

p<0.05; Wnt3+/-: BV and Tb.N, p<0.05).  

 

Bone formation is augmented following mechanical tibial loading in the Dkk1 KO mouse 

Dynamic histomorphometry of non-loaded contralateral control tibiae showed that periosteal and 

endosteal bone formation in the mid-diaphysis (37% cortical ROI) of Dkk1 KO (-7N and -12N) 

mice approached that of WT and Wnt3+/- mice by 12 weeks of age (Fig 5A-B).  

Significant effects were seen for genotype, genotype:loading, and loading for periosteal MAR and 

BFR/BS (p<0.01). The effect of loading was significant for periosteal MS/BS. Sub-analyses 

showed that following tibial loading periosteal MAR was significantly increased over contralateral 

control in Wnt3+/- (+334%, p<0.05), Dkk1 KO -12N (+330%, p<0.01) and Dkk1 KO -7N mice 

(229%, p<0.01) (Fig 5A). Periosteal MS/BS was also significantly increased in Wnt3+/- (+68%, 

p<0.05), Dkk1 KO -12N (+72%, p<0.01) loaded tibiae over control tibiae. This resulted in large 

increases in periosteal BFR/BS for Wnt3+/- (+439%, p<0.05),  Dkk1 KO -12N (+398%, p<0.01), 

and Dkk1 KO -7N (453%, p<0.01) loaded tibiae compared to contralateral control tibiae.  

Strain-matched loading of Dkk1 KO mice (-12N) demonstrated increased periosteal bone 

formation above the loaded tibiae of all other groups (Fig 5A). Significant increases in Dkk1 KO 

-12N loaded tibiae periosteal MAR (WT +166%, Wnt3+/- +95%, Dkk1 KO -7N +131%) and 
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BFR/BS (WT +167%, Wnt3+/- +102%, Dkk1 KO -7N +93%) were seen (p<0.01). WT, Wnt3+/- and 

Dkk1 KO -7N loaded tibiae all had similar periosteal bone formation parameters.  

Less marked responses were seen on the endosteal surface of the mid-diaphysis, however 

significant effects were seen with genotype:loading and loading for endosteal MAR and BFR/BS 

(p<0.05). Sub-analyses showed that significant increases in endosteal MAR and BFR/BS were 

seen for both the force-matched (MAR: +58%; BFR/BS: +77%, p<0.05) and strain-matched 

(MAR: +85%; BFR/BS: +82%, p<0.01) Dkk1 KO mice, compared to their contralateral control 

tibiae (Fig 5B). MAR and BFR/BS were not altered with loading in the WT and Wnt3+/- mice. 

Between genotype comparisons showed that strain-matched loading of Dkk1 KO mice resulted in 

significantly greater endosteal MAR above the loaded tibiae of the other groups (WT +34%, 

p<0.05; Wnt3+/- +55%, p<0.01; Dkk1 KO -7N +40%, p<0.05).  Similar periosteal and endosteal 

bone formation changes were seen within the second mid-diaphyseal ROI, assessed 50% down the 

tibiae (Supplementary Fig 2).  

 

Sost expression is not altered within Dkk1 KO mice, however decreases with loading 

The expression of Sost within the mid-shaft of Dkk1 KO non-loaded tibiae mice was not 

significantly altered compared to WT non-loaded tibiae (Fig 6A). The expression of Sost was also 

similar within the strain-matched loaded tibiae of both Dkk1 KO and WT mice. Notably, Sost 

expression was similarly decreased with loading in both WT (0.55 fold-change, p<0.01) and Dkk1 

KO mice (0.68 fold-change, p<0.01, Fig 6B). 
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DISCUSSION 

This study investigated the response of a Dkk1 KO mouse line to cyclic compressive tibial loading. 

As hypothesized, the deficiency of DKK1 protein in these mice did not impair the anabolic 

response of bone to load, but rather augmented this response. All mice showed increased bone 

formation and bone volume as a result of the cyclic compressive loading protocol of the tibiae. 

The cortical bone volume response correlated with an increased periosteal bone formation 

response. These responses showed the greatest effect size within the Dkk1 KO mice matched for 

strain in the cyclic loading protocol. This was the case for the BV response in all of VOIs measured. 

A variety of regions were measured due to a lack of standardization for regional analysis in the 

biomechanical testing field.  

Non-loaded tibiae of Dkk1 KO mice had greater bone volume compared to non-loaded tibiae of 

WT and Wnt3+/- control mice, which has been previously reported (24). Not only did WT and 

Wnt3+/- mice show comparable bone mass, Wnt3+/- mice also responded to loading similarly to 

WT. This was as anticipated as Wnt3+/- mice exhibit no independent bone phenotype, nor has Wnt3 

found to be expressed within the bone compartment (24, 37). Critically, this study showed that 

complete deletion of DKK1 does not result in maximal bone anabolism, as bone formation and 

bone volume were augmented with increased mechanical loading. Thus while Dkk1 expression 

can be regulated by load (14, 25), these data confirm that DKK1 is not essential for transducing 

the response to cyclic loading.  

Previous work investigating dynamic loading in animal models show that periosteal bone 

formation response is proportional to the local surface strain (38-40). With our Dkk1 KO mouse 

model it was therefore necessary to undertake a strain-matched loading regimen to directly 

compare the loading-induced bone response to wild type controls. An enhanced bone response 

within the Dkk1 KO mice was seen within the local region of equal strain with dynamic loading. 

Though these data support further clinical research into combining load-based exercise alongside 

anabolic drugs that enhance Wnt/β-catenin signaling, we must be mindful that such exercise would 

not easily control for the strain engendered upon the bone. However, our study included a force-

matched loaded Dkk1 KO mouse group, which provides additional insight. The force-matched 

Dkk1 KO mice displayed analogous responses to wild type mice within the mid-diaphyseal cortical 

bone, a region we know would have received a lower strain within the force-matched Dkk1 KO 
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mice.  Further, the metaphyseal total bone volume response was greater in the force-matched Dkk1 

KO mice than wild type.  

This study is consistent with our prior findings that increased Wnt/β-catenin signaling (instigated 

by decreased sclerostin activity) augments the bone response to mechanical loading (17, 18). One 

favored scenario was that sclerostin and DKK1 could compensate for each other within the bone 

compartment in such situations of deficiency (17). Dkk1 has previously been shown to be elevated 

with sclerostin deficiency (41-43), however the converse remained untested. Sclerostin itself is 

sensitive to load, and is down-regulated under conditions of increased loading (14, 25). In this 

study, Dkk1 KO tibiae showed no compensatory up-regulation of sclerostin expression, contrary 

to our initial hypothesis.  

Despite similar functions as Wnt antagonists, DKK1 may have a less important role than sclerostin 

in regulating bone mass. The limited anabolic effect of monoclonal antibodies to DKK1 within 

adult rodents has been suggested to potentially result from a reduction in DKK1 expression within 

adult bone (44, 45). Therefore, ubiquitous deficiency in DKK1 may not induce the same 

compensatory feedback within adult bone as seen with sclerostin deficiency. Sost expression was 

similarly decreased with loading in both wild type and Dkk1 KO mice, further suggesting that the 

augmented anabolic response to loading in the Dkk1 KO mouse could not be directly attributable 

to Sost down-regulation.  

It is likely that mechanotransduction within bone involves multiple signaling pathways intersecting 

with the Wnt/β-catenin pathway (8-11). As an anabolic bone response following mechanical 

loading requires intact Wnt/β-catenin signaling and a minimum threshold of β-catenin (15, 16, 46), 

the augmented loading response seen with DKK1 deficiency may result from heightened Wnt/β-

catenin signaling potentiated by intersecting pathways and signal transducers. Further gene 

expression exploration following loading stimulation may help to elucidate the mechanism of 

action behind the heightened anabolic response to loading in DKK1 deficient mice.  

In conclusion, this study provides novel information about mechanotransduction in bone. The 

anabolic bone response to dynamic tibial loading was augmented within mice lacking DKK1 

expression. Though the exact mechanisms for sensing and transducing mechanotransduction 

signals have yet to be fully elucidated, these data support the paradigm that pharmacotherapy 
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targeting Wnt/β-catenin signaling may be useful in conjunction with load-bearing exercise. This 

remains an unexplored avenue for future clinical research investigating exercise alongside the use 

of neutralizing antibodies to DKK1 or sclerostin, and may have specific benefits in the 

management of osteoporosis.  
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FIGURES 

 

 

 

Figure 1: (A) Volume of interests (VOIs) measured by microCT. Metaphysis: a 1.2mm height 

VOI commencing 0.5mm below the growth plate. 37%: mid-diaphyseal 0.5mm height VOI 

commencing 37% down the tibiae. 50%: mid-diaphyseal 0.5mm height VOI commencing 50% 

down the tibiae. 7.8mm VOI: commencing 0.5mm below the growth plate and of height 7.8mm. 

All microCT analysis excluded the fibula. (B) Bone volume (BV) by microCT of female wild type 

(WT), Wnt3+/- and Dkk1 KO mice aged 12 weeks, which did not undergo any loading regimen. 

Metaphyseal and mid-diaphyseal, 37% and 50%, VOIs were assessed. * p<0.05, ** p<0.01.  
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Figure 2: (A) In vivo strain measurements were performed on the medial mid-diaphysis of right 

and left tibiae of 10 week old female wild type (WT), Wnt3+/- and Dkk1 KO mice (N=4-5 

mice/genotype). Bars represent means ± SD stiffness. ** p<0.01. (B) The relationship between the 

axial force applied and the strain on the tibial mid-diaphysis was determined for each genotype. 

This was used to calculate the load required to achieve +1200µ at the tibial mid‐diaphysis each 

genotype, as shown. 
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Figure 3: (A) Bone volume (BV) of control and loaded tibiae within the 7.8mm height VOI 

assessed by microCT. Groups assessed included wild type (WT), Wnt3+/-, Dkk1 KO -12N and 

Dkk1 KO -7N. Mixed ANOVA: indicates an effect of (G) genotype, (G:L) genotype:loading, (L) 

loading, p<0.00001. Sub-analyses: † = p<0.01 loaded tibiae significant compared to contralateral 

control tibiae. a = p<0.05 compared to WT; b = p<0.05 compared to Wnt3+/-; c = p<0.05 compared 

to Dkk1 KO -12N; d = p<0.05 compared to Dkk1 KO -7N; within loaded or control tibiae. * 

indicates stronger significance of p<0.01 for between genotype comparisons. (B) BV change with 

loading along the tibiae, assessed by microCT. The increase in BV for each loaded tibia was 

determined from their own contralateral control tibia and the mean change plotted for all groups: 

WT, Wnt3+/-, Dkk1 KO -12N and Dkk1 KO -7N. 
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Figure 4: MicroCT assessment of the mid-diaphyseal VOI located 37% down the bone from the 

proximal end, for both control and loaded tibiae of all groups: wild type (WT), Wnt3+/-, Dkk1 KO 

-12N, Dkk1 KO -7N. (A) Bone volume (BV), cortical thickness (Ct.Th), tissue mineral density 

(TMD) and polar moment of inertia (J) were assessed for each tibiae. Mixed ANOVA: indicates 

an effect of (G) genotype, (G:L) genotype:loading, (L) loading, p<0.05. Sub-analyses: † = p<0.01, 

ǂ = p<0.05 loaded tibiae significant compared to contralateral control tibiae. a = p<0.05 compared 

to WT; b = p<0.05 compared to Wnt3+/-; c = p<0.05 compared to Dkk1 KO -12N; d = p<0.05 

compared to Dkk1 KO -7N; within loaded or control tibiae. * indicates stronger significance of 

p<0.01 for between genotype comparisons. (B) 3D models of the median BV within the mid-

diaphyseal 37% VOI for all groups. 
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Figure 5: Dynamic histomorphometry of bone formation within the mid-diaphyseal VOI located 37% down the bone from the proximal 

end, for control and loaded tibiae of all genotypes: wild type (WT), Wnt3+/-, Dkk1 KO -12N, Dkk1 KO -7N. (A) Analysis of the periosteal 

surface: mineral apposition rate (MAR/day), mineralizing surface/bone surface (MS/BS), bone formation rate/bone surface (BFR/BS). 

(B) Analysis of the endosteal surface: MAR/day, MS/BS, BFR/BS. Mixed ANOVA: indicates an effect of (G) genotype, (G:L) 

genotype:loading, (L) loading, p<0.05. Sub-analyses: † = p<0.01, ǂ = p<0.05 loaded tibiae significant compared to contralateral control 

tibiae. a = p<0.05 compared to WT; b = p<0.05 compared to Wnt3+/-; c = p<0.05 compared to Dkk1 KO -12N; d = p<0.05 compared to 

Dkk1 KO -7N; within loaded or control tibiae. * indicates stronger significance of p<0.01 for between genotype comparisons. (C) 

Representative images of median MAR within the mid-diaphyseal 37% VOI for all groups. 
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Figure 6: Gene expression of Sost measured at D3, 24 hrs following the second of two daily 

loading sessions. Control and loaded mid-shaft tibiae were assessed within wild type (WT) and 

strain-matched Dkk1 KO (-12N) mice. (A) Fold-change of Dkk1 KO mice normalized to WT, 

within control or loaded tibiae. (B) Fold-change of loaded tibiae normalized to control tibiae, 

within WT or Dkk1 KO mice. Mean + SEM shown. ** = p<0.01. 
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TABLES 

 

 

Table 1: MicroCT assessment of the tibial proximal metaphysis. 
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SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1: MicroCT assessment of the mid-diaphyseal VOI located 50% down 

the bone from the proximal end, for both control and loaded tibiae of all groups: wild type (WT), 

Wnt3+/-, Dkk1 KO -12N, Dkk1 KO -7N. Bone volume (BV), cortical thickness (Ct.Th), tissue 

mineral density (TMD) and polar moment of inertia (J) were assessed for each tibiae. Mixed 

ANOVA: indicates an effect of (G) genotype, (G:L) genotype:loading, (L) loading, p<0.05. Sub-

analyses: † = p<0.01, ǂ = p<0.05 loaded tibiae significant compared to contralateral control tibiae. 

a = p<0.05 compared to WT; b = p<0.05 compared to Wnt3+/-; c = p<0.05 compared to Dkk1 KO 

-12N; d = p<0.05 compared to Dkk1 KO -7N; within loaded or control tibiae. * indicates stronger 

significance of p<0.01 for between genotype comparisons.  
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Supplementary Figure 2: Dynamic histomorphometry of bone formation within the mid-

diaphyseal VOI located 50% down the bone from the proximal end, for control and loaded tibiae 

of all genotypes: wild type (WT), Wnt3+/-, Dkk1 KO -12N, Dkk1 KO -7N. (A) Analysis of the 

periosteal surface: mineral apposition rate (MAR/day), mineralizing surface/bone surface 

(MS/BS), bone formation rate/bone surface (BFR/BS). (B) Analysis of the endosteal surface: 

MAR/day, MS/BS, BFR/BS. Mixed ANOVA: indicates an effect of (G) genotype, (G:L) 

genotype:loading, (L) loading, p<0.05. Sub-analyses: † = p<0.01, ǂ = p<0.05 loaded tibiae 

significant compared to contralateral control tibiae. a = p<0.05 compared to WT; b = p<0.05 

compared to Wnt3+/-; c = p<0.05 compared to Dkk1 KO -12N; d = p<0.05 compared to Dkk1 KO 

-7N; within loaded or control tibiae. * indicates stronger significance of p<0.01 for between 

genotype comparisons.  
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ABSTRACT 

Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased 

expression of either increases bone formation and mass. As both affect the same signalling 

pathway, we aimed to elucidate redundancy and/or compensation of sclerostin and DKK1. Weekly 

sclerostin antibody (Scl-Ab) was administered to 9 week old female Dkk1 KO (Dkk1-/-:Wnt3+/-) 

mice and compared to Scl-Ab treated wild type mice, as well as vehicle-treated Dkk1 KO and wild 

type animals. While Wnt3 heterozygote (Wnt3+/-) mice show no bone phenotype, Scl-Ab and 

vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 

weeks for micro-computed tomography, histomorphometry, anti-sclerostin 

immunohistochemistry, and biomechanical testing. 

Scl-Ab enhanced bone anabolism in all treatment groups, with synergistic enhancement seen in 

the cancellous compartment of Dkk1 KO mice (bone volume +55% Dkk1 KO p<0.01; +22% wild 

type p<0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with 

anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved 

strength across all genotypes, however no enhancement was seen within Dkk1 KO mice. Scl-Ab 

treatment was associated with increased bone formation, regardless of genotype. 

Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO 

mice, suggesting increased Wnt signaling associated with DKK1 deficiency was not compensated 

by upregulation of sclerostin protein.  

These data suggest complex interactions between Wnt signaling factors in bone, but critically 

illustrate synergy between DKK1 deficiency and Scl-Ab treatment within cancellous bone. These 

data support the application of dual-targeted therapeutics in the modulation of bone anabolism. 

 

 

Keywords: Sclerostin; Sost; DKK1; anabolism; WNT antagonism 
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INTRODUCTION 

Dickkopf-1 (DKK1) and sclerostin, encoded by Dkk1 and Sost respectively, are soluble antagonists 

of the Wnt/β-catenin pathway, both of which target LRP5/6 receptors and inhibit Wnt binding (1). 

Both proteins are expressed and secreted within the bone microenvironment and regulate bone 

formation and resorption via modulation of Wnt/β-catenin signalling (2). In mice, overexpression 

of DKK1 or sclerostin within osteocytes or osteoblasts results in osteopenia (3-8). Conversely, 

heterozygous and homozygous deletion of Dkk1 or Sost leads to increased bone formation and 

greater bone mass (9-12). In humans, mutations within the Sost gene are associated with 

Sclerosteosis and van Buchem’s, conditions displaying characteristically high bone mass due to 

increased bone formation (6, 13-15).  

Redundancy and/or compensation between sclerostin and DKK1 within the bone compartment has 

been suggested. Dkk1 expression has been reported to increase when sclerostin is deficient, 

potentially via a negative feed-back mechanism. This has been seen within human and mouse 

conditions of Sost knock-out and also with the use of neutralizing antibodies to sclerostin (16-18). 

Ovariectomized rats treated weekly with anti-sclerostin antibody (Scl-Ab) for 26 weeks similarly 

displayed rapid but transient increases in bone anabolism (19). Notably, the anti-resorptive effects 

of Scl-Ab persisted throughout the treatment period. Similar diminution of upregulated bone 

anabolism has been observed in patients with Sclerosteosis (20). This suggests a compensatory 

mechanism during the absence of active sclerostin. 

Recently, a bispecific antibody targeting both DKK1 and sclerostin was tested extensively within 

rodent and primate animals (18). This bispecific antibody yielded improved bone formation above 

either singular therapy. Inhibiting both of these Wnt antagonists was presumed to further increase 

Wnt/β-catenin signaling. However, the high efficacy of dual therapy may be due to a secondary 

mechanism – the suppression of compensation and/or redundancy that exists between DKK1 and 

sclerostin. Notably, animals treated with Scl-Ab alone did show elevated Dkk1 expression (18). 

In this study we aimed to explore the regulatory interaction between DKK1 and sclerostin. This 

employed a Dkk1 KO mouse model treated for 3 weeks with Scl-Ab. Loss of DKK1 has been 

previously shown to be embryonic lethal, however a developmental knockdown of Wnt3 

expression has been found to create viable mice (21). Dkk1 KO mice were treated with Scl-Ab or 
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vehicle and compared with wild type and Wnt3+/- genotype control mice similarly treated. We 

hypothesized that an enhanced anabolic response would be seen following Scl-Ab treatment within 

the Dkk1 KO mice. Bone volume, bone formation and bone strength changes were examined 

within the tibial mid-diaphysis, proximal tibial metaphysis, and lumbar vertebrae using 

radiographic, dynamic histomorphometry, and mechanical testing outcome measures. Sost 

expression was also examined via immunohistochemistry staining. 

 

  



Chapter 4. Additional bone volume with Scl-Ab in Dkk1 KO mice 
 

119 

 

METHODS AND MATERIALS 

Dkk1 knockout mice 

A Dkk1-/-:Wnt3+/- mouse colony was originally generated by crossing Wnt3+/- and Dkk1+/- strains 

with a further generation of Dkk1+/- backcrossing (22, 23). The colony was gifted by Prof. Patrick 

Tam, and was maintained and utilized on its original mixed 129J×C57Bl/6 background (28). The 

wild type (Dkk1+/+:Wnt3+/+) and Wnt3 knockdown (Wnt3+/-; Dkk1+/+:Wnt3+/-) mice were sourced 

from the Wnt3+/- × Dkk1+/- cross colony. Animal experiments were approved and performed under 

the Western Sydney LHD Animal Ethics Committee protocol 4174 and CMRI/CHW animal ethics 

protocol K338.  

Animals were bred in house at the Westmead Animal Holdings facility and Kid’s Research 

Institute Transgenic Facility. Mice were housed with littermates with a maximum of 4 mice/cage, 

and were given access to rodent chow and water ad libitum. Genotyping on DNA from ear punches 

was performed using DirectPCR (Viagen Biotech, Los Angeles, CA, USA), for the Dkk1 wild type 

gene, the Dkk1 neo mutant allele and the Wnt3 allele using published methods (22, 23).  

 

Biologicals and study design 

A total of 96 mice were included within the study (N=16-18/group). A monoclonal antibody to 

sclerostin (sclerostin antibody/Scl-Ab) was gifted by Novartis Pharma AG (Basel, Switzerland) 

and Mereo BioPharma (London, UK). At 9 weeks of age, on day (D)0, mice were intravenously 

injected with vehicle (isotonic buffer pH 5.3) or 100mg/kg Scl-Ab, a concentration previously 

shown to be effective in mice (24, 25). Second and third doses were administered at D7 and D14. 

Mice were subcutaneously injected with calcein (10mg/kg, Sigma-Aldrich, MO, USA) 3 and 10 

days prior to euthanasia. Mice were euthanized on D21, at 12 weeks of age. Tibiae and spine were 

harvested. Specimens for histology were fixed in 10% formalin for 24hrs and stored in 70% 

ethanol. Specimens for mechanical testing were stored (unfixed) wrapped in saline-soaked gauze 

at -80°C. 
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Micro-computed tomography 

The right tibiae and lumbar vertebrae were microCT scanned ex vivo using 12 μm and 14.7 μm 

isotropic voxel resolutions respectively (50 kV, 800 μA; Skyscan 1174 2; Skyscan NV, Kontich, 

Belgium). Images were reconstructed (0-0.1; NRecon v1.6.1.7; Skyscan NV) and analyzed with 

CTAnalyser (Skyscan NV). Bone was set at minimum 0.4 g/cm3, correlated to phantoms of known 

density. All three-dimensional (3D) reconstructions were created on CTVol (Skyscan NV). 

All tibial analysis excluded the fibula. Within the proximal metaphysis a VOI of height 1.2 mm 

commencing 0.5 mm below the growth plate was selected to represent the secondary spongiosa. 

All bone within this region was assessed, and cancellous and cortical bone compartments were 

also assessed separately, as seen before (26). Bone parameters assessed included bone volume 

(BV), total volume (TV), BV/TV, tissue mineral density (TMD). As well as trabecular thickness 

(Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) within the cancellous bone 

compartment, and cortical thickness (Ct.Th), periosteal surface (Ps), and endocortical surface (Ec) 

within the cortical bone compartment.  

Within the tibial diaphysis, a 0.5 mm height VOI was assessed commencing half-way down the 

tibia from the proximal end, as corresponds with microCT assessment studies of murine tibiae (25-

29). Bone parameters included BV, TV, TMD, Ct.Th, Ps, Ec, polar moment of inertia (J), and 

moment of inertia about the anteroposterior axis (Iap), the latter two being geometric predictors of 

whole bone strength. A second diaphyseal VOI of height 0.5 mm, starting 37% down from the 

proximal end of the tibiae was also assessed for direct comparison to published in vivo 

mechanotransduction studies (25-27). Data is provided as supplementary material. 

Within the lumbar vertebrae, the body of L1 was isolated for assessment and the posterior vertebral 

arch excluded. A VOI of height 1.8 mm was assessed centered within the body, and the cortical 

sheath and cancellous bone compartments were assessed separately. Parameters assessed were the 

same as for the tibial metaphysis.  
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Bone histomorphometry 

Using a diamond saw, the left tibiae were transversely cut at 37% and 50% down the tibiae. The 

cross-sectional surface at the 50% region of interest (ROI) was smoothed using sand paper of grit 

P1200 and cleaned in 70% ethanol. Samples were placed with the cross-sectional area of interest 

facing down on a plastic dish in 70% ethanol and were scanned and imaged using Leica TCS SP5 

confocal microscope at 20x magnification (Leica Microsystems, NSW, Australia). The exposure 

time, z-stack, gain and offset remained consistent for all specimens. The endosteal and periosteal 

surfaces of each cross-sectional sample were analyzed for daily mineral apposition rate (MAR), 

mineralizing surface/bone surface (MS/BS) and bone formation rate/bone surface (BFR/BS).  

The proximal (0-37%) portion of the tibiae were cryo-sectioned mineralized using Cryofilm type 

IIC(10) (Section-Lab Co., Hiroshima, Japan). Coronal sections (5 µm) were cut to assess the 

proximal metaphysis. Images were captured using Aperio Scanscope FL and Aperio Imagescope 

v11.2.0.780 (Aperio, Vista, CA, USA). A cancellous ROI of 1.2 mm height, commencing 0.5mm 

below the proximal growth plate was measured for daily mineral apposition rate (MAR), 

mineralizing surface/bone surface (MS/BS), and bone formation rate (BFR/BS). Tibiae were then 

decalcified in EDTA and embedded in paraffin. Coronal sections (5 µm) were stained for tartrate-

resistant acid phosphatase (TRAP), and imaged using Scanscope CS2 (Aperio). The cancellous 

ROI within the proximal tibial metaphysis was again assessed for number of osteoclasts (N.Oc), 

osteoclast number/bone surface (N.Oc/BS), osteoclast surface/bone surface (Oc.S/BS), and 

osteoclast surface/osteoclast number (Oc.S/N.Oc). All analyses were performed using 

BIOQUANT measure 32 Nova Prime (Nashville, TN, USA). 

 

Mechanical testing 

Right tibiae and L1 lumbar vertebrae underwent mechanical testing to failure using an Instron 

5944 (Massachusetts, USA), with data collected using BlueHill 3 software. L1 vertebrae were 

chosen as more distal lumber vertebrae were commonly misshapen and/or fused within the Dkk1 

KO mice. Bones were stored at -80°C and allowed to thaw to room temperature prior to testing. 

Tibia were mechanically tested by four point bending to failure. Tibiae were positioned so that the 
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medial side was resting across the bottom spans. The support span was 12 mm, and the upper span 

measured 5 mm. Samples were pre-loaded at 0.25 mm/min until a load of 1N was reached, at 

which point the loading rate increased to 0.5 mm/min until failure. L1 vertebrae were tested by 

compression until failure along the cephalocaudal axis. The superior end facing up and processes 

removed prior to testing and the specimens placed on a custom jig, designed with a pin attachment 

to allow for placement through the neural canal to stabilize the upper and lower plates. The 

compression testing was performed at 3 mm/min until failure. For both the tibial and vertebral 

testing, maximum load (N) was the maximum recorded load for a specimen, and stiffness (N/mm) 

was calculated as the gradient of the linear portion of the load-displacement curve. 

 

Immunohistochemistry 

Immunohistochemical staining to identify sclerostin expression was performed on vehicle and Scl-

Ab treated Dkk1 KO and wild type tibiae collected at the 12-week end-point. In brief, paraffin 

sections were dewaxed in xylenes and rehydrated through a decreasing gradient of ethanol. All 

washes between incubations/treatments were performed with Wash Buffer (S300685, 

DAKO/Agilent Pathology Solutions, CA, USA). Antigen retrieval was performed using Carezyme 

II:Pepsin (BIC-PEP956H, Metagene Pty Ltd, QLD, Australia), followed by quenching of 

endogenous peroxidase with 3% H2O2, and blocked with Protein Block (X09093, DAKO/Agilent). 

Primary (1ng/ml; Anti-Mouse SOST antibody AF1589; R&D Systems, MN, USA) and secondary 

(1:200 dilution, Biotinylated-Horse Anti-Goat BA-9500; Vector Laboratories, CA, USA) 

antibodies were used. The signal by bound antibodies were amplified by Vectastain Elite ABC 

(Vector Laboratories) and visualized by DAB substrate (DAKO/Agilent). Sections were 

counterstained with hematoxylin and imaged using Aperio CS2 slide scanner (Leica, Germany). 

Control sections were included within the immunohistochemistry which omitted the primary 

antibody incubation to ensure that no non-specific binding was occurring. 
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Statistical analysis 

The between subjects effects of drug treatment (vehicle, Scl-Ab) and genotype (wild type, Wnt3+/-

, Dkk1 KO) as well as the interactions between these terms were assessed using a two-way 

ANOVA. Post-hoc Tukey HSD testing was performed on the between-subject effect of genotype 

to outline what genotypes were significantly different. Sub-analyses between groups was 

performed using one way ANOVA and LSD post-hoc analysis to determine what specific groups 

(genotype and drug treatment) were significantly altered. Data assessed and presented are for drug 

related changes within each genotype, and genotype related changes within a drug treatment. Mean 

and standard deviation are presented within graphs and tables. n assessed are listed within tables 

or figure legends. For all testing a value of p<0.05 was considered significant. All analysis was 

performed using IBM SPSS Statistics 24 (SPSS Inc., Chicago, IL, USA) and graphs created using 

GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). 
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RESULTS 

Bone volume is increased with Dkk1 deficiency 

MicroCT analyses of the tibiae and L1 vertebrae confirmed that Dkk1 KO mice showed an 

increased bone volume phenotype at 12 weeks of age compared to wild type and Wnt3+/- control 

mice (Tables 1-3). Dkk1 KO mice showed considerable increases within cancellous bone of the 

tibiae and L1 vertebrae. Within the proximal tibial metaphysis, cancellous BV/TV was 

significantly increased in Dkk1 KO vehicle treated mice over both wild type (+123%, p<0.05) and 

Wnt3+/- mice (+180%, p<0.01) (Table 1). Tb.N was also significantly increased in Dkk1 KO 

vehicle treated mice over both wild type (+117%, p<0.01) and Wnt3+/- mice (+150%, p<0.01). 

Similarly, within the bone of the L1 vertebrae, cancellous BV/TV and Tb.N were significantly 

increased in Dkk1 KO vehicle treated mice over both wild type (BV/TV: +30%; Tb.N: +162%, 

p<0.01) and Wnt3+/- mice (BV/TV: +65%; Tb.N: +162%, p<0.01) (Table 3). Cortical bone volume 

however was not increased in the Dkk1 KO mice within the proximal tibial metaphysis, the L1 

vertebrae, and also of the tibial mid-diaphysis. However within a VOI measured half-way down 

the tibiae (mid-diaphysis) there were significant increases in Dkk1 KO vehicle treated mice 

compared to control genotypes in BV (wild type: +14%; Wnt3+/-: +25%; p<0.01), Ct.Th (wild 

type: +7%, p<0.05; Wnt3+/-: +15%, p<0.01), and Ps (wild type: +9%; Wnt3+/-: +13%; p<0.01) 

(Table 2).  

 

Scl-Ab treatment synergizes with Dkk1 deficiency in the proximal tibia 

When assessing all bone within the tibial proximal metaphysis by microCT, the interaction of 

genotype:drug was significant for BV (p<0.01) and TV (p<0.05) (Table 1). The effects of genotype 

and drug treatment were both separately significant for all parameters measured (BV, TV, BV/TV 

and TMD, p<0.01). Sub-analyses showed that BV and BV/TV were significantly increased with 

Scl-Ab treatment for all genotypes compared to vehicle treated tibiae of the same genotype. These 

BV and BV/TV increases were greater in the Dkk1 KO mice (BV +55%, BV/TV +27%, p<0.01), 

than the wild type (BV +22%, p<0.05 and BV/TV +20%, p<0.01) and the Wnt3+/- (BV +28%, 

BV/TV +15%, p<0.01) mice. BV and BV/TV were significantly greater within the Scl-Ab treated 

Dkk1 KO mice than for Scl-Ab treated mice of the other genotypes (increase over wild type: BV 
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+42%, BV/TV +17%; increase over Wnt3+/-: BV +52%, BV/TV +25%; p<0.01). There were no 

differences in bone parameters between Scl-Ab treated wild type and Scl-Ab treated Wnt3+/- mice.  

The cancellous and cortical bone compartments were assessed separately within the proximal tibial 

metaphysis to better understand the response of the individual compartments to Scl-Ab treatment. 

Within the cancellous bone compartment the interaction of genotype:drug was significant for BV, 

TV, BV/TV, TMD, and Tb.Th (p<0.05, Table 1). The effects of genotype and drug treatment were 

both separately significant for BV, BV/TV, Tb.Th, Tb.Sp, and Tb.N (p<0.01). Sub-analyses 

revealed that Scl-Ab treatment resulted in increases in TMD and Tb.Th across all genotypes, when 

compared to vehicle treated mice of the same genotype (p<0.01). These increases were greater for 

the Dkk1 KO mouse (TMD +21%, Tb.Th +56%) than for the wild type (TMD +11%, Tb.Th +22%) 

and Wnt3+/- (TMD +11%, Tb.Th +38%) mice. BV/TV was significantly increased following Scl-

Ab treatment for wild type (+130%, p<0.01) and Dkk1 KO (+143%, p<0.01) mice. A +106% 

increase in BV/TV was also seen following Scl-Ab treatment within Wnt3+/- mice, however did 

not reach significance (p=0.08). Notably, BV and TV were not significantly altered with Scl-Ab 

treatment in the wild type or Wnt3+/- mice, however significant increases were seen within the 

Dkk1 KO mice following Scl-Ab treatment (BV +187%, p<0.01; TV +18%, p<0.05). Three-

dimensional (3D) reconstructions of the median cancellous BV within the tibial metaphysis are 

shown for each group (Figure 1A). 

Within the cortical bone compartment of the proximal tibial metaphysis TV only was significant 

for the interaction of genotype:drug (p<0.05, Table 1). The effect of genotype was significant for 

BV, Ct.Th, Ps, and Ec (p<0.05), and drug treatment significant for all parameters except Ec 

(p<0.05). Sub-analyses showed that Scl-Ab treatment resulted in significant increases in BV, TMD 

and Ct.Th for all genotypes (p<0.01). The TMD and Ct.Th increases with Scl-Ab were similar 

across all genotypes (TMD +6-10%, Ct.Th +15-17%). BV increase due to Scl-Ab treatment was 

moderately enhanced in the Dkk1 KO mice (+26%) compared to wild type (+14%) and Wnt3+/- 

(+20%) mice. TMD and Ct.Th was not different between Scl-Ab treated groups of any genotype, 

however BV was significantly greater in the Scl-Ab treated Dkk1 KO mice than the Scl-Ab treated 

wild type (+13%, p<0.01) or Wnt3+/- (+17%, p<0.01) mice.  

These data suggest that the anabolic response to Scl-Ab was enhanced within the tibial metaphysis 

of Dkk1 KO mice, and synergistically within the cancellous bone compartment.  
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Scl-Ab treatment produces a less marked anabolic response in the tibial diaphysis 

The mid-diaphysis was also assessed by microCT (Table 2). The effects of drug treatment and 

genotype were significant for TV, BV, Ct.Th, Ps and moment of inertia (polar and about the 

anteroposterior axis), with post-hoc testing detailing the genotype effects were between Dkk1 KO 

mice and the control mice (wild type and Wnt3+/-) (p<0.01). The effect of genotype was significant 

for Ec also, and drug was significant for TMD. Sub-analyses showed that the response to Scl-Ab 

treatment was less marked than that seen within the metaphyseal cortical bone. However, notable 

increases due to Scl-Ab treatment within the mid-diaphyseal cortical bone were within BV, TMD 

and Ct.Th. Notably, these increases were greatest in the Wnt3+/- genotype (BV +25%, TMD +6%, 

Ct.Th +19%, p<0.01), however similar between wild type (BV +14% p<0.01, TMD +4% p<0.05, 

Ct.Th +14% p<0.01) and Dkk1 KO (BV +18% p<0.01, TMD +4% p<0.05, Ct.Th +10% p<0.01) 

genotypes. Despite this, Dkk1 KO Scl-Ab treated mice still had significantly higher values for BV 

and Ct.Th, along with Ps, Ec, and polar moment of inertia above Scl-Ab treated wild type and 

Wnt3+/- mice. However, vehicle treated Dkk1 KO mice initially had significantly higher values for 

these parameters compared to vehicle treated wild type and Wnt3+/- mice. 3D reconstructions of 

the median BV within the mid-diaphysis are shown for each group (Figure 1B). A second 

diaphyseal VOI commencing 37% down the tibiae was also assessed. Results were similar to the 

mid-diaphyseal VOI and data is shown within Supplementary Table 1. 

 

Anabolic response to Scl-Ab treatment in the L1 vertebrae body independent of genotype 

Within the L1 vertebrae body, cancellous and cortical bone compartments were assessed by 

microCT (Table 3). Similar to results seen within the proximal metaphysis of the tibia, the most 

pronounced effects were seen within the cancellous compartment of the L1 vertebrae. The effects 

of genotype and drug were both significant for BV, TMD, Tb.Th, Tb.Sp, and Tb.N (p<0.01). The 

interaction of genotype:drug was significant for TMD, Tb.Th and Tb.N (p<0.01). Sub-analyses 

showed that the changes due to Scl-Ab treatment had a significant anabolic effect on all genotypes 

(BV/TV: wild type +62%, Wnt3+/- +68%, Dkk1 KO +57%, p<0.01). The effect of Scl-Ab on TMD 

and the cancellous architecture was enhanced within the Dkk1 KO mouse (TMD: wild type +43%, 
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Wnt3+/- +38%, Dkk1 KO +70%, p<0.01; Tb.Th: wild type -27%, Wnt3+/- -23%, Dkk1 KO -22%, 

p<0.01; Tb.N: wild type +27% p<0.01, Wnt3+/- +21% p<0.01, Dkk1 KO +35% p<0.05). BV/TV, 

TMD and Tb.Th values were all significantly greater in the Dkk1 KO Scl-Ab group, compared to 

wild type and Wnt3+/- Scl-Ab groups (p<0.01), however so were most of the values for the Dkk1 

KO vehicle group compared to wild type and Wnt3+/- vehicle groups (p<0.01).  

The effect of drug treatment on the cortical bone of the L1 vertebrae was significant for BV and 

TV. Sub-analyses showed that similar increases in BV and TMD were seen with Scl-Ab treatment, 

compared to vehicle, across all genotypes (p<0.01). 3D reconstructions of the median cancellous 

BV within the L1 vertebrae body are shown for each group (Figure 1C). 

 

Scl-Ab treatment enhances bone formation rates in the proximal tibia and tibial midshaft 

independent of genotype 

Dynamic histomorphometry was assessed within the mid-diaphysis and proximal metaphysis of 

the tibiae (Figure 2). Within the mid-diaphysis, similar results were seen on the periosteal and 

endosteal surfaces (Figure 2A-B). The effect of genotype was not significant for any parameter, 

however drug treatment was for all (p<0.01). Sub-analyses confirmed that dynamic bone formation 

parameters on the periosteal and endosteal surfaces were not-significantly different between any 

genotype, regardless of drug treatment. Scl-Ab treatment resulted in significant increases in 

MS/BS and BFR/BS for all genotypes (Dkk1 KO mice - MS/BS: periosteal +258%, endosteal 

+65%; BFR/BS: periosteal +375%, endosteal +118%; p<0.01) (wild type - MS/BS: periosteal 

+98%, endosteal +38%; BFR/BS: periosteal +129%, endosteal +61%; p<0.01) (Wnt3+/- - MS/BS: 

periosteal +209%, endosteal +43%; BFR/BS: periosteal +169%, endosteal +61%; p<0.01). Images 

representing the median periosteal BFR/BS are shown in Figure 2C. 

Within the proximal metaphysis of the tibiae, again the effect of genotype was not significant for 

any parameter, however drug treatment was significant for all (p<0.05, Figure 2D). The interaction 

of genotype:drug treatment was also significant for MAR and BFR/BS (p<0.05). Sub-analyses 

revealed that Dkk1 KO vehicle mice had increased MAR and MS/BS compared to wild type 

vehicle mice (MAR +259%, MS/BS +135%, p<0.01). Notably, the addition of Scl-Ab did not 

further increase MAR or MS/BS within the Dkk1 KO mice, but rather these levels were similar for 
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all Scl-Ab treated mice, regardless of genotype. This suggests that a maximal MAR and MS/BS 

level was reached within either Dkk1 KO vehicle mice or Scl-Ab treatment. BFR/BS within the 

tibial proximal metaphysis was similar for all groups, except for wild type Scl-Ab mice, which had 

significantly greater BFR/BS over all other groups. Images representing the median BFR/BS are 

shown in Figure 2E.  

The number of osteoclasts and osteoclast surface activity were measured within this same 

metaphyseal ROI (Figure 2F). The effect of genotype was significant for N.Oc and Oc.S/N.Oc 

only, and the effect of drug was not significant for any parameter measured. Sub-analyses showed 

that there were a significantly greater number of osteoclasts within the Dkk1 KO mice than in 

Wnt3+/- mice, regardless of drug treatment (p<0.05). Wild type mice had similarly low numbers of 

osteoclasts as Wnt3+/- mice, however the comparison to Dkk1 KO mice did not reach significance 

(vehicle: p=0.08; Scl-Ab: p=0.05). Sub-analyses also showed that Oc.S/BS and Oc.S/N.Oc were 

not different between any group, suggesting that the osteoclast activity on the bone surface was 

not greatly altered by either DKK1 deficiency of Scl-Ab treatment.  

 

Scl-Ab treatment enhances tibial mid-diaphyseal and lumbar vertebrae strength 

independent of genotype 

Four-point bending was undertaken on the tibiae, assessing the strength of the mid-diaphyseal 

cortical bone (Figure 3A). The effect of drug treatment was significant for all parameters, whilst 

genotype was significant for stiffness only. However, sub-analyses showed that all genotypes of 

the same drug treatment, either vehicle or Scl-Ab, were similar in maximum load to failure, 

stiffness, and energy, except for a -16% decrease in stiffness in vehicle treated Wnt3+/- mice 

compared to wild type vehicle (p<0.05). Scl-Ab treatment had a significant effect for maximum 

load to failure only, where it was similarly improved with Scl-Ab treatment across all genotypes 

(wild type +16%, p<0.05; Wnt3+/- +23%, p<0.05; Dkk1 KO +37%, p<0.01).  

Compression testing of the L1 vertebrae was also performed (Figure 3B). The effect of genotype 

was significant for maximum load to failure (p<0.05), whilst drug treatment was significant for all 

parameters (p<0.01). Sub-analyses showed that vehicle treated Dkk1 KO mice had greater 
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maximum load to failure compared to vehicle treated wild type (+48%) and Wnt3+/- (+54%) mice 

(p<0.05). Scl-Ab treatment significantly increased maximum load to failure within all genotypes 

(wild type +143%; Wnt3+/- +109%; Dkk1 KO +58%, p<0.01). And a maximal strength was reached 

with Scl-Ab dosing, with all Scl-Ab genotypes having similar maximum load. Scl-Ab treatment 

only had an effect on stiffness within the wild type group (+68%, p<0.01), whilst energy to 

maximum load was increased following Scl-Ab treatment for all genotypes (wild type +240%, 

p<0.01; Wnt3+/- +192%, p<0.01; Dkk1 KO +89%, p<0.05). The energy was similar for all Scl-Ab 

treated mice, suggesting again that a maximal threshold was reached with Scl-Ab treatment.  

 

Sclerostin protein does not show compensatory upregulation in Dkk1 KO mice 

Sclerostin expression within the tibiae was identified by immunohistochemical staining (Figure 

4). Considerable staining of sclerostin was seen in both cancellous (Figure 4A) and cortical (Figure 

4B) bone compartments. Observational assessment revealed no evident alterations in sclerostin 

distribution or staining intensity between groups, regardless of genotype or drug treatment.  
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DISCUSSION 

This study investigated the bone response of a Dkk1 KO mouse line to short-term Scl-Ab therapy. 

As expected, there was no negative effect on bone anabolism with dual DKK1 and sclerostin 

deficiency, but rather there was a synergistic anabolic response to Scl-Ab treatment within the 

Dkk1 KO mice. This synergistic response was limited to the cancellous bone compartment, with 

the anabolic effect on cortical bone equivalent across all genotypes. These data support the concept 

that inhibition of multiple Wnt antagonists can enhance bone anabolism in cancellous bone. 

Vehicle treated Dkk1 KO mice displayed a high bone mass phenotype compared to vehicle treated 

control wild type and Wnt3+/- mice. The most prominent increases were seen within the cancellous 

bone of the proximal metaphysis and vertebrae. This data is in agreement with prior findings within 

female adult Dkk1 KO mice, where effects were primarily seen within cancellous bone (12). 

Further, we have shown that the strength of the L1 vertebrae was increased within non-treated 

Dkk1 KO mice over genotype controls, confirming an improvement in cancellous bone strength in 

the Dkk1 KO mice and confirming previously shown data (12). However, the strength of the tibial 

mid-diaphysis was not altered between genotypes, suggesting a limited role of DKK1 in regulating 

cortical bone within this region. This is consistent with prior suggestions that DKK1 may have a 

lesser role in regulating cortical bone (12), and that its expression may be limited within adult 

cortical bone (30). 

Scl-Ab treatment had a significant anabolic effect on all mice. Within the cortical bone 

compartments (tibial mid-diaphyseal and metaphyseal cortical bone, and vertebral cortical bone), 

similar anabolic increases were seen across all genotypes with Scl-Ab treatment. Dynamic bone 

formation measures confirmed similar responses to Scl-Ab across all genotypes within the cortical 

bone of the tibial mid-diaphysis. However, the anabolic bone volume response to Scl-Ab was 

synergistically enhanced within the cancellous bone of the proximal tibiae of Dkk1 KO mice. The 

response of vertebral cancellous bone to Scl-Ab was also improved within Dkk1 KO mice. These 

data suggest that dual inhibition of DKK1 and sclerostin may enhance cancellous bone anabolism. 

Further, it supports the evidence that DKK1 expression may be more localized to cancellous bone 

(12, 30).  



Chapter 4. Additional bone volume with Scl-Ab in Dkk1 KO mice 
 

131 

 

Despite the synergistic increases in bone parameters in the cancellous bone with Dkk1 KO 

genotype and Scl-Ab treatment, there was no significant interaction between variables in terms of 

dynamic bone formation measures. This result was unexpected and could be justified by multiple 

explanations. The first possibility is that Scl-Ab or Dkk1 KO could be affecting bone resorption 

rather than formation, however this is unlikely as osteoclast activity was not effected by either 

genotype or Scl-Ab treatment. A more likely alternate scenario is that the synergistic interaction 

is transient and the effects on cancellous bone anabolism are no longer detectable at 3 weeks.  

There is building evidence on the transient effect of Scl-Ab on bone formation. The levels of bone 

formation markers following Scl-Ab therapy have been shown to be transient within Phase II and 

III clinical trials (31-33). Similarly, lessening of the strong anabolic effects within Sclerosteosis 

patients has also been observed (20). Recently, weekly Scl-Ab dosing of balb/c mice showed an 

attenuated serum P1NP response as early as the third dose, compared with mice being dosed for 

the first time (34). Further, Col1a1 mRNA expression within bone was reduced by 6 weeks of 

dosing. Longer assessment of Scl-Ab treatment alongside DKK1 deficiency would be required to 

further elucidate the transient bone formation response in this setting of dual deficiency. Utilization 

of anti-catabolic agents, such as bisphosphonates, may also be investigated to harness any transient 

anabolic burst. Such follow-up bisphosphonate investigations have been previously undertaken in 

Scl-Ab (romosozumab, Amgen) Phase II clinical trials (35). 

Contrary to our initial hypothesis, sclerostin expression in the tibiae was not upregulated in Dkk1 

KO bones. An important caveat is that Dkk1 KO mice have had developmental and sustained 

DKK1 deficiency and compensatory upregulation of sclerostin protein may be transient. 

Moreover, while DKK1 levels have been shown to be elevated with sclerostin deficiency (16-18), 

the converse may not be true. This again may result from DKK1 having a less prominent regulatory 

role within the adult skeleton (30). 

In conclusion, this study uses an alternative system to a prior report using a bispecific 

DKK1/sclerostin antibody (18) to examine the interaction between DKK1 and sclerostin in bone. 

Not only were Dkk1 KO mice capable of mounting an anabolic response to Scl-Ab treatment, this 

response within cancellous bone was synergistic compared to the response of wild type mice to 

Scl-Ab. Immunostaining indicated that compensatory upregulation of sclerostin protein in Dkk1 
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KO mice was not the underlying mechanism, and thus further studies are required to determine the 

complex interactions in Wnt signaling in cancellous bone. These data support the theory that dual 

agents targeting Wnt modulation have the potential for increased bone anabolism above a single 

agent.  
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FIGURES 

 

Figure 1: 3D models of bone specimens showing the median bone volume per group as measured by microCT. (A) Proximal tibial metaphysis. A 

1.2mm volume of interest (VOI) was selected 0.5mm below the growth plate. (B) Tibial mid-diaphysis. A 0.5mm VOI was selected half-way 

down the tibia. (C) The body of the L1 vertebrae was isolated and a VOI of 1.8mm height assessed. A 0.5mm section centered within this VOI 

was selected for 3D modeling.  
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Figure 2: Histomorphometry of the tibiae of Dkk1 KO and control (wild type and Wnt3+/-) 

mice following three weeks treatment with vehicle or Scl-Ab. (A-D) Mineral apposition rate 

(MAR), mineralizing surface/bone surface (MS/BS), and bone formation rate (BFR/BS) were 

measured/calculated. (A) Dynamic bone formation of the periosteal surface of mid-diaphyseal 
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cortical bone at a ROI half way along the tibiae. n=8 (B) Dynamic bone formation of the 

endosteal surface of mid-diaphyseal cortical bone at a ROI half way along the tibiae. n=8 (C) 

Representative specimens of mid-diaphyseal ROI (median BFR/BS). Scale bar is 300µm. (D) 

Dynamic bone formation of the cancellous bone within the proximal metaphysis. n=5-8 (E) 

Representative specimens of the metaphyseal ROI (median BFR/BS). Scale bar is 400µm.  (F) 

Number of osteoclasts (N.Oc), number of osteoclasts/bone surface (N.Oc/BS), Osteoclast 

surface/bone surface (Oc.S/BS), and osteoclast surface/number of osteoclasts were measured 

within cancellous bone of the proximal metaphysis. n=7-8. Data (bars) are Mean (SD). 

ANOVA: significant between-subjects effects of (G) genotype, (D) drug treatment, and the 

interaction of (G:D) genotype:drug (p<0.05). Tukey HSD post-hoc testing of between-subject 

effect of genotype: significance for (1) wild type vs Wnt3+/-, (2) wild type vs Dkk1 KO, (3) 

Wnt3+/- vs Dkk1 KO (p<0.05). Sub-analyses: V = p<0.05 Scl-Ab compared to vehicle treatment 

of the same genotype, a = p<0.05 compared to wild type of same drug treatment, b = p<0.05 

compared to Wnt3+/- of same drug treatment, c = p<0.05 compared to Dkk1 KO of same drug 

treatment. * indicates stronger significance of p<0.01 for sub-analyses. 
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Figure 3: Mechanical testing of bones from Dkk1 KO and control (wild type and Wnt3+/-) mice 

following 3 weeks treatment with vehicle or Scl-Ab. Maximum load to failure (Maximum 

load), Stiffness, and energy until maximum load (Energy) were measured/calculated. (A) Four-

point testing of tibiae. (B) Compression testing of L1 vertebrae. Data (bars) are Mean (SD). 

ANOVA: significant between-subjects effects of (G) genotype, (D) drug treatment, and the 

interaction of (G:D) genotype:drug (p<0.05). Tukey HSD post-hoc testing of between-subject 

effect of genotype: significance for (1) wild type vs Wnt3+/-, (2) wild type vs Dkk1 KO, (3) 

Wnt3+/- vs Dkk1 KO (p<0.05). Sub-analyses: V = p<0.05 Scl-Ab compared to vehicle treatment 

of the same genotype, a = p<0.05 compared to wild type of same drug treatment, b = p<0.05 

compared to Wnt3+/- of same drug treatment, c = p<0.05 compared to Dkk1 KO of same drug 

treatment. * indicates stronger significance of p<0.01 for sub-analyses. 
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Figure 4: Immunohistochemistry for sclerostin in tibiae of vehicle and Scl-Ab treated wild 

type and Dkk1 KO mice at the 12-week end-point. (A) Proximal metaphysis. The bottom panel 

is a region from the top panel in higher magnification. (B) Mid-diaphysis. Scale bar 50µm. 
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TABLES 

 

Table 1: Bone parameters of the tibial metaphysis measured by microCT for wild type, Wnt3+/- and Dkk1 KO mice, which underwent vehicle or 

Scl-Ab treatment. 
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Table 2: Cortical bone parameters of the tibial mid-diaphysis measured by microCT for wild type, Wnt3+/- and Dkk1 KO mice, which underwent 

vehicle or Scl-Ab treatment. 
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Table 3: Cancellous and cortical bone parameters of the L1 vertebrae measured by microCT for vehicle or Scl-Ab treated wild type, Wnt3+/- and 

Dkk1 KO mice.
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SUPPLEMENTARY DATA 

 

Supplementary Table 1: Cortical bone parameters of the tibial diaphysis, starting 37% down the tibia, measured by microCT for wild type, 

Wnt3+/- and Dkk1 KO mice, which underwent vehicle or Scl-Ab treatment. 
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ABSTRACT

Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/b-catenin signaling, results in increased bone

formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce

fracture risk. Sclerostin is also important inmodulating the response of bone to changes in its biomechanical environment. However,

the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for

individuals receiving Scl-Ab therapy. To address this, we carried out a 2-week study of tibial cyclic compressive loading on C57Bl/6

mice treated with vehicle or 100mg/kg/wk Scl-Ab. Increases in bone volume, density, and dynamic bone formation were foundwith

loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying

mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibias isolated from mice from all four experimental

groups. Major alterations in Wnt/b-catenin gene expression were found with tibial loading, however not with Scl-Ab treatment

alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and

mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway

with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or

loading treatment alone. The Wnt/b-catenin and Rho GTPase pathways were implicated within bone mechanotransduction and

support the concept that bonemechanotransduction is likely to encompass a number of interconnected signaling pathways. © 2017

American Society for Bone and Mineral Research.

KEY WORDS: WNT/b-CATENIN/LRPS; THERAPEUTICS; ANABOLICS; BONE QCT/mCT; PRECLINICAL STUDIES

Introduction

Osteoporosis is a prevalent and debilitating bone fragility

disorder where a reduction in bone mass leads to an

increase in fracture risk. Osteoporosis is most common in

postmenopausal women; however, it can affect men and

women of any age. Some pediatric bone disorders can also

lead to bone fragility (eg, osteogenesis imperfecta), but

individuals with disuse osteopenia and cerebral palsy also

show increased fracture risk.(1–3) Antiresorptive drugs, particu-

larly bisphosphonates, are the mainstay of current therapeutic

interventions for bone fragility. These agents may have limited

therapeutic benefit, however, in situations where anabolism is

deficient.(2,4,5)

As a nonpharmaceutical intervention, exercise featuring bone

loading has been demonstrated to increase bone mass and

resistance to fracture.(6–8) Although such treatments capitalize

on the biomechanical responsiveness of bone, this is not

suitable for all patients. Thus, drugs that promote increased

bone formation have been developed as an alternative or

adjunctive treatment. Parathyroid hormone (PTH) analogs

teriparatide and, more recently, abaloparatide have been shown

to increase bone mineral density (BMD) and decrease fracture

rate in clinical trials.(9–11) Neutralizing antibodies to sclerostin

(Scl-Ab) are another bone anabolic therapeutic principle that

targets the sclerostin protein and abrogates its inhibition

of Wnt/b-catenin signaling.(12) Sclerostin is expressed chiefly

by osteocytes(13–15) and acts upon osteoblasts in a paracrine

manner. The major effect of Scl-Ab is the stimulation of bone

formation;(16) however, human clinical trials of Scl-Ab have also

shown decreases in bone resorption alongside increased bone

formation.(17)
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Sclerostin plays a major role in mechanotransduction within

bone. Both acute and chronic deficiency in sclerostin can prevent

bone loss associated with reduced loading.(18–20) Conversely,

upregulation of sclerostin has been shown to prevent the added

bone anabolismassociatedwith increased loading.(21) However, it

is not clear whether Scl-Ab therapy and increased mechanical

stimulation of bone are redundant. If so, therewould be expected

to be no additional benefit to recommending biomechanical

loading exercise to individuals on Scl-Ab for treatment of low

bone mass or bone mineral density (BMD).

In a recent study, we analyzedmechanical loading in a genetic

knockout mouse model of sclerostin gene (Sost) deficiency.(20)

In this model, there was no attenuation of the response to cyclic

compressive loading in the Sost knockout mice. Indeed, the

combination of loading and Sost deficiency resulted in an

augmentation of the anabolic response. It was hypothesized

that these findings may translate to short-term Scl-Ab

therapy, which may show synergistic benefits with exercise-

based loading programs.

In this study,we tested this concept in C57Bl/6mice via 2weeks

of cyclic compressive loading of the tibia. Mice were treated with

vehicle or 100mg/kg/wk Scl-Ab in parallel during this period of

biomechanical loading. Radiographic and histomorphometric

measures were used to investigate functional changes in bone

volume and bone formation, and RNASeqwas used to investigate

mechanistic changes in gene expression.

Materials and Methods

Animals and Scl-Ab treatment

A total of 36 female 9-week-old C57BL/6J mice (n¼ 18 vehicle/

Scl-Ab treatment) were sourced from Animal Resources

Centre (Murdoch, Australia) and acclimatized for 1 week before

treatment. Animals were housed 4/cage and given water and

rodent chow ad libitum. Studies were approved under South

Western Area Health Service (SWAHS) ethics protocol 4174.

A neutralizing human monoclonal antibody to sclerostin

(sclerostin antibody/Scl-Ab) that binds human and mouse

sclerostin was gifted by Novartis Pharma AG (Basel, Switzerland).

At 10 weeks of age, on day (D)0, randomly allocated mice were

intravenously injected with vehicle (isotonic buffer pH 5.3) or

100mg/kg Scl-Ab, a concentration previously shown to be

effective in mice.(22) A second dose was administered at D7.

An overview of the study design, including dosing, dual-energy

X-ray absorptiometry (DXA), tibial loading, and euthanasia, is

summarized in Fig. 1A and is described in detail below.

In vivo tibial mechanical loading for radiographic and
bone formation assessment

Mice commenced unilateral cyclic axial compression of the left

tibia at D1 (n¼ 8 for vehicle and Scl-Ab antibody treatment).

Briefly, 1200 cycles were applied at a rate of 4 Hz, 5 d/wk for

Fig. 1. (A) Study design for radiographic/histomorphometry outcomes (n¼ 8) and gene expression outcomes (n¼ 10). For each mouse, vehicle/Scl-Ab

(100mg/kg iv) dosing was administered on D0 and D7. DXA was performed on D0, D7, and D14. Tibial compressive cyclic loading of the left tibia was

performed D1–5 and D8–12. Endpoint was D15 for radiographic/histomorphometry outcomes and D3 for gene expression outcomes. (B) Graphical

depiction of the VOIs assessed bymCT (fibula excluded from all analysis). A 7.8mmheight VOI was used to assess the tibia from 0.5mmbelow the growth

plate to above the tibia-fibula junction. A 0.5mm height VOI was used to assess the mid-diaphysis of the tibias, 37% and 50% down the length of the

tibias from the proximal end. (C) Weekly body weights for the mice that underwent 2 weeks of tibial loading. Between-group analyses (t test): �p< 0.05,
��p< 0.01. (D) Left tibia length of each mouse after 2 weeks of tibial loading.
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2 weeks, with rest on D6, D7, D13, and D14. Cycles were in a

triangular waveform with a peak load of –9.0 N to engender

1200me on the midshaft of 10-week-old C57Bl/6J mice, as

previously described.(20,23) Right tibias behaved as contralateral

non-loaded controls. Mice were monitored and weighed daily,

and weekly body weights were recorded.

Mice were subcutaneously injected with calcein (10mg/kg,

Sigma, St. Louis, MO, USA) 10 and 3 days before euthanization.

Mice were euthanized at D15 by CO2 asphyxiation. Right

(control) and left (loaded) tibias were dissected and fixed for

24 hr in 10% formalin and stored in 70% ethanol. Right and left

tibias were X-rayed and their length measured (Faxitron X-ray

Corp., Wheeling, IL, USA).

Dual-energy X-ray absorptiometry

DXA (GE Lunar PIXImus; Lunar Piximus Corp., Madison, WI, USA)

was performed at D0, D7, and D14 under inhaled isoflurane

anesthesia. Blinded to drug treatment but not load, a region of

interest of 30� 13 (LxW) pixels was analyzed in the diaphysis,

centered halfway along the tibia. BMDand bonemineral content

(BMC) were obtained and fold-change from D0 assessed at each

time point.

Microcomputed tomography

Right and left tibias were mCT scanned ex vivo (Skyscan 1174 2;

Skyscan NV, Kontich, Belgium) using 12 mm isotropic voxel

resolution, 0.5mm aluminum filter, 50 kV X-ray tube voltage,

800mA tube electric current, and 4500ms exposure time.

Images were reconstructed using a 0–0.1 greyscale (NRecon

v1.6.1.7; Skyscan NV) and analyzed with CTAnalyser (Skyscan

NV). The minimum threshold for bone was 0.4 g/cm3, correlated

to phantoms of known density.

All analyses excluded the fibula and were performed blinded

to drug treatment but not load. A volume of interest (VOI)

denoted “7.8mmVOI” was selected, commencing 0.5mmbelow

the growth plate and finishing 7.8mm distally, proximal to the

tibia-fibula joint (Fig. 1B). Consecutive VOIs of height 0.06mm

were assessed along the 7.8mm VOI and plotted on a histogram

to visualize bone volume change along the bone after loading

(loaded BV-control BV) for Scl-Ab- and vehicle-treated mice.

Subregional analysis within the diaphysis was performed on

a VOI of height 0.5mm commencing 37% down the tibia

from the proximal end (Fig. 1B). This VOI corresponds with

other published studies examining dynamic loading of murine

tibias.(20,24–26) A second VOI of the same height but 50% down

the tibia was also analyzed and supplied as supplemental data.

A metaphyseal region representing the secondary spongiosa

was assessed; VOI height 1.2mm, commencing 0.5mm below

the proximal growth plate. All bone was assessed, as well as

separate subanalyses of trabecular and cortical bone compart-

ments. Bone parameters assessed included bone volume (BV),

total volume (TV), BV/TV, tissue mineral density (TMD), as well

as trabecular thickness (Tb.Th), within the trabecular bone

compartment, and cortical thickness (Ct.Th), periosteal surface

(Ps), endocortical surface (Ec), and polar moment of inertia (J)

within the cortical bone compartment.

Dynamic bone histomorphometry

Using a diamond saw, the tibias were transversely cut 37%down

from the proximal end of the tibias. The cross-sectional surface

was smoothed using sandpaper of grit P1200 and cleaned in

70% ethanol. Samples were placed with the cross-sectional area

of interest facing down on a plastic dish in 70% ethanol andwere

scanned and imaged using Leica TCS SP5 confocal microscope

at 20� magnification (Leica Microsystems, North Ryde,

Australia). The exposure time, z-stack, gain, and offset remained

consistent for all specimens. The endosteal and periosteal

surfaces of each cross-sectional sample were analyzed for

daily mineral apposition rate (MAR), mineralizing surface/bone

surface (MS/BS), and bone formation rate/bone surface (BFR/BS)

using BIOQUANT measure 32 Nova Prime (Nashville, TN, USA).

Analyses were performed blinded to drug treatment but not

load. The tibias were also transversely cut 50% down the bone

and similarly prepared and analyzed (supplied as supplemental

data).

Statistical analysis

The within-subject effect of loading (control, loaded limbs) and

the between-subject effect of drug treatment (vehicle, Scl-Ab) as

well as the interactions between these terms were assessed

using a mixed ANOVA. For DXA analyses, the interactions

between the terms of time (D0, D7, D14) and drug treatment and

between time and loading were respectively assessed by mixed

and two-way repeatedmeasures ANOVAs. Subanalyses between

drug treatment groups was performed using parametric

independent samples t test. Analysis of contralateral tibiae

(control versus loaded within treatment groups) was performed

using parametric paired samples t test. For all testing, a value of

p< 0.05 was considered significant. All analysis was performed

using IBM SPSS Statistics 20 (SPSS Inc., Chicago, IL, USA) and

graphed with GraphPad Prism 7 (GraphPad Software, La Jolla,

CA, USA).

Specimen preparation for RNA sequencing (RNAseq)
studies

At age 10 weeks, on D1 (1 day after vehicle/Scl-Ab treatment),

20 mice (n¼ 10 vehicle/Scl-Ab) commenced unilateral cyclic

axial compression of the left tibia under the same conditions as

themice for radiographic/bone formation assessment. However,

these mice received loading on D1 and D2 only and were

euthanized 24 hr later on D3 (Fig. 1A). Euthanasia (cervical

dislocation) was just before tibial dissection. The right (control)

tibia was dissected quickly and within an RNase-free environ-

ment. The tibia was cleaned thoroughly of soft tissue and the

bone scraped clean using a scalpel. The proximal and distal ends

of the bone were cut off to leave the bone shaft. The shaft was

flushed of marrow using DEPC-treated water, and the clean

bone was placed in 2mL Trizol, homogenized using a Polytron

PT2100 (Kinematica, Lucerne, Switzerland) and placed on dry ice

immediately. This was repeated for the left (loaded) tibia of the

same mouse. The entire process of euthanasia and dissection

was repeated for each mouse in turn and the homogenizer was

cleaned thoroughly between each tibia. The homogenized

samples in Trizol were stored at –80°C.

RNA isolation and whole transcriptome RNAseq

Samples were thawed on ice and total RNA isolated using

chloroform separation and the miRNeasy Mini Kit (Qiagen,

Valencia, CA, USA) per the manual instructions. Quality and

concentration of RNA was accessed via the 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, USA). For RNAseq, n¼

6/group of the highest quality RNA was used. The RNA integrity

number for all samples fell between 6.6 and 9.3.
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RNAseq (100 bp single end reads) was performed via the

Australian Genome Research Facility (AGRF, Parkville, Australia)

using the Illumina HiSeq2000 (Illumina, Inc., San Diego, CA, USA).

Image analysis was performed in real time by the HiSeq Control

Software (HCS) v1.4.8 and Real Time Analysis (RTA) v1.18.61

(Illumina, Inc.). Primary sequence data were generated via

Illumina CASAVA 1.8.2 pipeline (Illumina, Inc.), quality-checked

by FastQC (per-base sequence quality >88% bases above Q30),

and screened for Illumina adaptor/overrepresented sequences

and cross-species contamination. Cleaned sequence reads

were aligned against the Mus musculus genome (build version

mm10) using Tophat aligner (v1.3.1).(27) Transcripts were

assembled with the Cufflinks tool (v2.2.1) utilizing GENCODE

annotation version M4 (http://www.gencodegenes.org) for the

Mus musculus genome (build version mm10) and reference

annotation based assembly option (RABT).

Assembled transcripts underwent quantification, normaliza-

tion, and differential expression analysis using cluster profiler.

Analysis of differentially expressed genes (DEGs) was undertaken

using the bioconductor package edgeR.(28) A false-discovery rate

(FDR, q value) <0.05 was used. Comparisons 1–4 assessed

between groups are listed in Table 1. DEGs common and unique

between comparisons were investigated and numbers repre-

sented in VENN diagrams.(29) Pathway enrichment analyses of

gene sets were undertaken using Bioconductor Pathview

package.(30) All data were compared with a list of genes possibly

from contaminant tissue outside the bone compartment and of

which may be present after murine diaphyseal tibial loading, as

outlined by Ayturk and colleagues.(31)

Results

Scl-Ab and loading increase BMD, BMC, and BV along the
length of the tibias

Compressive axial loading was performed on tibias of vehicle-

and Scl-Ab-treated mice. All mice showed evidence of good

health for the entirety of the study. A small decline in body

weight was found during the first week of the study but

normalized by the second week (Fig. 1C). Loading or drug

treatment did not have any effect on tibial length (Fig. 1D).

Longitudinal DXA was performed on the tibia indicating

anabolic responses due to both Scl-Ab and loading treatments

(Fig. 2A). Significant BMC and BMD responses to loading and

drug treatment were found by day 14. Further, the effect of drug

treatment and timewas significant for control (BMD) and loaded

limbs (BMC, BMD). Significant effects of loading and time and of

drug and time were also observed. Subanalyses showed

significant increases in BMC and BMD with the combination

of load and Scl-Ab treatment compared with all other groups.

Notably, BMC and BMD were significantly greater with the

combination therapy compared with Scl-Ab alone at both

D7 and D14 (p< 0.01) and compared with loading alone

(D7 p< 0.05, D14 p< 0.01). The Vehicle Loaded group showed

increased BMD (p< 0.01) but not BMC at this time point

comparedwith Vehicle Control. Similar trends were noted for D7

that only reached significance for the Scl-Ab Loaded group.

mCT analysis at D15, performed within a VOI spanning a

7.8mm length of the tibias, showed significant effects in BV to

loading and Scl-Ab treatments. Subanalyses showed that BVwas

significantly greater in Scl-Ab Loaded tibias compared with

Vehicle Loaded tibias (þ15%, p< 0.01; Fig 2B). Without loading,

Scl-Ab treatment gave a 13% BV increase compared with

Vehicle Control (p< 0.01). Loading increased BV within both

vehicle- and Scl-Ab-treated mice (Loaded versus Control:

þ18% vehicle,þ20% Scl-Ab, p< 0.01), and the loading-induced

BV increases were found along the entire tibias in both

vehicle- and Scl-Ab-treated mice (Fig. 2C).

Scl-Ab and loading increase cortical bone volume and
thickness

Murine tibial loading studies commonly focus on the cortical

bone, and a subregion within the mid-diaphyseal VOI (37%

down the tibias) was selected for detailed mCT analysis (Fig. 3A).

The effect of loading was significant across all parameters, and

the effect of drug treatment was significant within BV, Ct.Th, and

polar moment of inertia. Subanalyses showed that BV was

significantly greater in Scl-Ab Loaded tibias above Vehicle

Loaded tibias (þ12%, p< 0.01) and Scl-Ab Control tibias (þ22%,

p< 0.01). This was likely driven by a periosteal response within

the mid-diaphysis, with small but significant increases in

periosteal surface (þ7%, p< 0.01) and Ct.Th (þ15%, p< 0.01)

in Scl-Ab Loaded tibias above Scl-Ab Control. Strength as

predicted by polar moment of inertia (J) was significantly

enhanced by the combination therapy; Scl-Ab Loaded tibias

were increasedþ16% andþ33% comparedwith Vehicle Loaded

and Scl-Ab non-loaded controls, respectively (p< 0.05). Scl-Ab

treatment alone significantly increased BV and Ct.Th, confirming

the anabolic efficacy of the drug (Vehicle Control versus

Scl-Ab Control: þ7% BV, p< 0.05; þ8% Ct.Th, p< 0.01). Loading

treatment alone also resulted in an anabolic response compared

with non-loaded controls within vehicle-treatedmice (þ17% BV;

þ3% TMD; þ5% Ct.Th; þ26% J; p< 0.01). In summary, an

increased anabolic response with the loading and Scl-Ab

combination was found versus either treatment alone.

Representative 3D models for specimens representing the

median BV values for each treatment group illustrated the

quantitative findings (Fig. 3B). A comparable trend was found

in the second mid-diaphyseal VOI, 50% down the bone

(Supplemental Fig. S1).

A metaphyseal region was also assessed by mCT (Fig. 4). The

effect of loading and drug treatment was significant for total

(combined cortical and trabecular) BV, cortical BV, and cortical

thickness. Subanalyses confirmed a greater loading response

within this region within Scl-Ab-treated mice. Parameters

including total BV (þ60%, þ26%, þ29%) and BV/TV, trabecular

BV (þ116%, þ58%, þ25%), BV/TV, Tb.Th, and TMD, and cortical

Table 1. RNASeq Data Were Assessed for Multiple Comparisons

Comparison Assessment of:

1 Vehicle Control versus Vehicle Loaded Genes altered due to loading alone

2 Vehicle Control versus Scl-Ab Control Genes altered due to Scl-Ab treatment

3 Scl-Ab Control versus Scl-Ab Loaded Genes altered due to loading in the presence of Scl-Ab

4 Vehicle Loaded versus Scl-Ab Loaded Genes altered in loaded bones due to Scl-Ab
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BV (þ46%,þ18%,þ31%) and Ct.Th were all significantly greater

with combination Scl-Ab and loading treatment, above Vehicle

Control, Vehicle Loaded, and Scl-Ab Control, respectively.

The effect of loading on the metaphysis was significant for all

parameters, omitting cortical TMD. The effect of drug treatment

on the metaphysis was significant for all parameters, omitting

total TMD and Ps. Notably, subanalyses showed that within

the trabecular compartment, Scl-Ab had a greater anabolic

response than loading above Vehicle Control (Vehicle Loaded:

BVþ37%, BV/TVþ23%; Scl-Ab Control: BVþ73%, BV/TVþ60%).

This was not found within the cortical compartment, whereby

loading alone elicited a stronger response than Scl-Ab. This

suggests a stronger response for Scl-Ab within the trabecular

compartment. However, both treatment groups saw significant

responseswithin all parameters, omitting total and cortical TMD,

and Ps. These data confirm that both loading and Scl-Ab

elicit anabolic responses within the metaphysis and

that even greater responses were found with combination

therapy.

Scl-Ab and loading increase bone anabolism

The effects of Scl-Ab and loading on mineralization and bone

formation rate were analyzed using dynamic bone labeling within

the mid-diaphysis, whereby the effect of load was of particular

significance on the periosteal surface in all parameters assessed,

and the effect of drug treatment was significant for periosteal

MS/BS. Subanalyses observed that combination Scl-Ab and loading

increased theperiosteal responseaboveScl-Abalone (þ147%MAR;

þ115% MS/BS; þ340% BFR/BS; p < 0.01; Fig. 5A). Scl-Ab therapy

similarly increased the anabolic periosteal response in non-loaded

tibias (VehicleControl versusScl-AbControl:þ131%MS/BS;þ180%

BFR/BS; p< 0.05). In untreated control animals, load also increased

periosteal bone formation (Vehicle Control versus Vehicle Loaded:

þ259% MAR; þ903 BFR; p < 0.05). There was no difference in

periosteal bone formation between Scl-Ab Loaded and Vehicle

Loaded tibias. In contrast, the endosteal response was muted and

any changes of statistical significance were small in magnitude

(Fig. 5B). Representative images are shown within Fig. 5C.

Fig. 2. (A) Dual-energy X-ray absorptiometry (DXA) was performed at D0, D7, and D14 on control and loaded tibias, and the mid-diaphysis

assessed. Fold-change in bone mineral content (BMC) and bone mineral density (BMD) from D0 was determined for each mouse at D7 and D14,

and the mean� SD shown. ANOVA: bottom right-hand of each graph indicates an effect of (^) drug treatment, (#) loading, (†) loading and drug

treatment at each time point, (¥) time and drug treatment for control/loaded limbs, w) time and loading for each drug treatment. Subanalyses

between groups at each time point (t test): a¼ p< 0.05 Vehicle Control versus Vehicle Loaded, b¼ p < 0.05 Scl-Ab Control versus Scl-Ab Loaded,

c¼ p < 0.05 Vehicle Control versus Scl-Ab Loaded, and d¼ p < 0.05 Vehicle Loaded versus Scl-Ab Loaded. �p< 0.01. All groups were compared;

only comparisons that were significant are detailed. (B) Bone volume (BV) of control and loaded tibias within a 7.8mm height VOI assessed by mCT.

ANOVA: indicates an effect of (^) drug treatment, (#) loading, (†) loading and drug treatment. Subanalyses between groups (t test): ��p< 0.01.

(C) BV change with loading along the tibias, assessed by mCT. Consecutive 0.06mm VOIs were assessed along the 7.8mm VOI for all tibias. The

increase in BV for each loaded tibia was determined from their own contralateral control tibia and the mean change for vehicle and Scl-Ab

treatment groups were plotted.
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Differential gene expression in response to Scl-Ab and load

Radiographic and histological data indicated that sclerostin

inhibition and cyclic compressive loading led to significant

changes in bone volume, density, and formation. To investigate

the underlying genetic mechanisms, RNAseq was undertaken

using mRNA isolated from bones stripped of periosteum and

flushed ofmarrow. The transcriptome profile, notionally enriched

for osteocyte gene expression, were compared between all

groups to determine all differentially expressed genes (DEGs;

Supplemental Tables S1–S4).

The top 15 upregulated and downregulated genes were

determined based on changes associated with load (Table 2)

and related to Scl-Ab treatment (Table 3). For later discussion, it

Fig. 3. mCT assessment of the mid-diaphyseal VOI located 37% down the bone from the proximal end, for both control and loaded tibias of all vehicle-

and Scl-Ab-treatedmice. (A) Bone volume (BV), tissuemineral density (TMD), cortical thickness (Ct.Th), periosteal perimeter (Ps), endosteal perimeter (Ec),

and polar moment of inertia (J) were assessed for each tibia. ANOVA: indicates an effect of (^) drug treatment, (#) loading, (†) loading and drug treatment.

Subanalyses between groups (t test): �p< 0.05, ��p< 0.01. (B) Representative 3Dmodels of the 37%VOI, locatedwithin themid-diaphysis, for control and

loaded tibias of vehicle and Scl-Ab treatment groups.

Fig. 4. mCT assessment of the proximal tibial metaphysis for control and loaded tibias of all vehicle- and Scl-Ab-treated mice. (A) Total metaphysis

(trabecular and cortical compartments): bone volume (BV), tissue volume (TV), BV/TV, tissuemineral density (TMD). (B) Trabecular bone compartment: BV,

BV/TV, trabecular thickness (Tb.Th), TMD. (C) Cortical bone compartment: BV, cortical thickness (Ct.Th), periosteal surface (Ps), TMD. ANOVA: indicates an

effect of (^) drug treatment, (#) loading, (†) loading and drug treatment. Subanalyses between groups (t test): �p< 0.05, ��p< 0.01.
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Fig. 5. Dynamic tissue histomorphometry of the mid-diaphyseal VOI located 37% down the bone from the proximal end, for both control and loaded

tibias of all vehicle- and Scl-Ab-treatedmice. Mineral apposition rate (MAR), mineralizing surface/bone surface (MS/BS), and bone formation rate (BFR/BS)

were assessed for periosteal and endosteal surfaces of all tibias. ANOVA: indicates an effect of (^) drug treatment, (#) loading, (†) loading and drug

treatment. Subanalyses between groups (t test): �p< 0.05, ��p< 0.01. (A) Periosteal surface. (B) Endosteal surface. (C) Representative images of the 37%

VOI for control and loaded tibias of Vehicle and Scl-Ab treatment groups.

Table 2. The Top 15 Up- and Downregulated DEGs Related to Loading in Vehicle- and Scl-Ab-Treated Mice

Vehicle Control versus Vehicle Loaded Scl-Ab Control versus Scl-Ab Loaded

Gene symbol

Fold

change p Value q Value Gene symbol

Fold

change p Value q Value

Gm8034 10.42 5.00E-05 1.98E-03 Tfcp2l1 68.68 5.00E-05 4.42E-03
Gle1 8.61 5.00E-05 1.98E-03 Lonrf3 63.42 5.00E-05 4.42E-03
Rps16 7.80 5.00E-05 1.98E-03 1700030C10Rik,Gm28503,

RP23-152O2.3
15.65 5.00E-05 4.42E-03

Igkv4-90 7.46 1.35E-03 3.20E-02 Lhx6 13.53 5.00E-05 4.42E-03
Gm27477,Gm27861,Gm27867,
Gm27868,Hotairm1

7.38 5.00E-05 1.98E-03 BC024978 6.67 5.00E-05 4.42E-03

Car12 6.98 5.00E-05 1.98E-03 Gal 5.03 5.00E-05 4.42E-03
Sln 5.94 5.00E-04 1.41E-02 Kera 4.56 2.00E-04 1.36E-02
St7 5.57 5.00E-05 1.98E-03 Nell1 4.37 5.00E-05 4.42E-03
Ighv5-12 5.28 5.00E-05 1.98E-03 Auts2 3.76 5.00E-05 4.42E-03
Panx3 4.88 5.00E-05 1.98E-03 Aif1l 3.64 5.00E-05 4.42E-03
Wnt1 4.88 5.00E-05 1.98E-03 Ighv5-9-1 3.56 6.00E-04 3.14E-02
Serpina3n 4.85 5.00E-05 1.98E-03 Gm12519 3.40 5.00E-05 4.42E-03
Bcan 4.52 5.00E-05 1.98E-03 Ptgs2 3.29 5.00E-05 4.42E-03
Acan 4.51 5.00E-05 1.98E-03 Cfhr2 3.04 1.50E-04 1.11E-02
Thbs4 4.37 5.00E-05 1.98E-03 Nr4a2 2.94 5.00E-05 4.42E-03
2310014L17Rik 0.00 5.00E-05 1.98E-03 Hist1h2ac 0.04 5.00E-05 4.42E-03
Igkv6-13 0.07 5.00E-05 1.98E-03 Gm5269 0.04 5.50E-04 2.94E-02
Igkv3-1 0.10 5.00E-05 1.98E-03 Gm27477,Gm27861,Gm27867,

Gm27868,Hotairm1
0.14 1.00E-04 7.94E-03

Ighv1-50 0.17 5.00E-05 1.98E-03 Ighv5-12 0.15 5.00E-05 4.42E-03
Ighv1-72 0.19 5.00E-05 1.98E-03 St7 0.21 5.00E-05 4.42E-03
Gm26397 0.19 5.00E-05 1.98E-03 Ighv14-1 0.21 5.00E-05 4.42E-03
Ighv1-85 0.20 3.00E-04 9.14E-03 Actc1 0.24 5.00E-05 4.42E-03
Igkv4-86 0.21 5.00E-05 1.98E-03 Cyp2e1 0.26 5.00E-05 4.42E-03
Prss30 0.21 5.00E-05 1.98E-03 Arhgap22 0.27 5.00E-05 4.42E-03
Ighv1-18 0.23 5.00E-05 1.98E-03 Igkv4-58 0.30 6.00E-04 3.14E-02
Igkv4-72 0.23 5.00E-05 1.98E-03 Rpl21 0.30 5.00E-05 4.42E-03
Igkv4-70 0.29 5.00E-05 1.98E-03 Shank2 0.32 5.00E-05 4.42E-03
Igkv8-30 0.30 5.50E-04 1.52E-02 Mpz 0.32 5.00E-05 4.42E-03
Igkv15-103 0.34 5.00E-05 1.98E-03 Myoc 0.34 5.00E-05 4.42E-03
Cytl1 0.35 1.00E-04 3.61E-03 Fam65a 0.34 5.00E-05 4.42E-03
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was noted that these lists of the greatest fold changes included

genes involved with WNT signaling (Wnt1, Tfcp2l1, Cyp2e1,

MyoC, Med23), inflammation (Panx3, Ptgs2, Nr4a2, P2rx7), and

BMP signaling and osteogenic differentiation (Kera, Nell1, MyoC,

P2rx7, Med23).

To further refine the analysis, the DEG list was compared with

a list of potential contaminating sequences from outside the

bone compartment.(31) These ranged from 0.3% to 2.9% of the

DEGs for each of the comparisons (Supplemental Table S5). Of

note, Sln, Actn1, andMyl2 identified in Tables 2 and 3 may result

from contaminant tissues.

Based on similar prior studies analyzing the response of

the transcriptome to biomechanical loading, a candidate gene

approach was also taken to examine changes in relative gene

expression. This included genes with known roles in Wnt/

b-catenin signaling as well as other orphan genes related to

sensation of load.(32,33) Consistent with these genes and the

Wnt/b-catenin pathway in general having key roles in Scl-Ab

and load responses, significant changes in gene expression

were found, particularly when comparing Vehicle Control and

Vehicle Loaded groups (Fig. 6). In addition, several genes

showed the greatest change in the Scl-Ab Loaded treatment

group including Wisp1, Dkk3, Cdh2, Sfrp5, Ptgs2, and Ptn.

It was speculated that transcripts key to the load and Scl-Ab

responses would be shared between sets of differentially

expressed genes. A comparison of DEGs were made according

to load response (Fig. 7A) and the Scl-Ab response (Fig. 7B).

This identified 251 genes that were differentially expressed

in response to load in both Vehicle- and Scl-Ab-treated mice.

A total of 194 genes were differentially expressed in response to

Scl-Ab in both control and loaded mice.

Conversely, 100 DEGs were found to be specifically upregu-

lated due to load in Scl-Ab-treated mice but not control mice. A

further 203 DEGs were specifically upregulated due to Scl-Ab

treatment in loaded but not the non-loaded tibias. A further

comparison of the two groups (Fig. 7C) highlighted 80 DEGs that

were alteredwithin both subgroups (Table 4). Noteworthy DEGs’

potential key to the combined response of Scl-Ab and loading

include Ptgs2 (3.23; 3.44), Enpp1 (1.66; 1.69), Sox9 (2.19; 2.43),

Dkk1 (1.53; 1.58), Nell1 (4.37; 4.41), Nbl1 (1.49; 1.53), Fam3c (1.43;

1.47), Gdpd2 (0.65; 0.66), Ckb (1.44; 1.40), Klf4 (1.45; 1.48), and

Bmp7 (1.63; 1.64).

Table 3. The Top 15 Up- and Downregulated Genes Related to Scl-Ab Treatment in Control or Loaded Tibias

Vehicle Control versus Scl-Ab Control Vehicle Loaded versus Scl-Ab Loaded

Gene symbol

Fold

change p Value q Value Gene symbol

Fold

change p Value q Value

Cnga1 121.01 9.00E-04 4.40E-02 Pnpla3 93.58 5.00E-05 3.69E-03

Igkv1-88 49.11 5.00E-05 3.58E-03 Tfcp2l1 68.79 5.00E-05 3.69E-03

Hoxb4 31.15 5.00E-05 3.58E-03 Lonrf3 65.14 5.00E-05 3.69E-03

1700030C10Rik,Gm28503,RP23-

152O2.3

13.73 5.00E-05 3.58E-03 1700030C10Rik,Gm28503,

RP23-152O2.3

15.30 5.00E-05 3.69E-03

P2rx7 12.86 5.00E-05 3.58E-03 Lhx6 13.43 5.00E-05 3.69E-03

Cep131 10.89 5.00E-05 3.58E-03 BC024978 6.67 5.00E-05 3.69E-03

Med23 7.67 5.00E-05 3.58E-03 Gal 5.18 5.00E-05 3.69E-03

Gm27454,Gm27492,Gm27543,

Gm27695,Gm28032,Hoxa11os

6.29 5.00E-05 3.58E-03 Kera 4.74 5.00E-05 3.69E-03

Zfp618 5.87 5.00E-05 3.58E-03 Nell1 4.41 5.00E-05 3.69E-03

Ighv5-16 5.85 5.00E-05 3.58E-03 Auts2 3.99 5.00E-05 3.69E-03

BC024978 5.52 5.00E-05 3.58E-03 Aif1l 3.92 3.00E-04 1.65E-02

Igkv8-27 5.20 5.00E-05 3.58E-03 Ighv5-9-1 3.67 1.00E-04 6.63E-03

Igkv4-69 4.79 2.50E-04 1.49E-02 Ptgs2 3.44 5.00E-05 3.69E-03

Rabl2 4.71 5.00E-05 3.58E-03 Gm12519 3.20 5.00E-05 3.69E-03

Igkv3-4 4.50 5.00E-05 3.58E-03 Cfhr2 3.16 5.00E-05 3.69E-03

2310014L17Rik 0.00 5.00E-05 3.58E-03 Gm5269 0.04 4.00E-04 2.05E-02

Hist1h2ac 0.01 5.00E-05 3.58E-03 Hist1h2ac 0.04 5.00E-05 3.69E-03

Tnni1 0.06 1.00E-04 6.59E-03 Gm8034 0.09 5.00E-05 3.69E-03

Gm26397 0.06 5.00E-05 3.58E-03 Rps16 0.14 5.00E-05 3.69E-03

Igkv3-1 0.10 5.00E-05 3.58E-03 Gm27477,Gm27861,Gm27867,

Gm27868,Hotairm1

0.15 5.00E-05 3.69E-03

Igkv4-86 0.12 5.00E-05 3.58E-03 Ighv5-12 0.15 5.00E-05 3.69E-03

C5ar2 0.12 2.00E-04 1.23E-02 St7 0.21 5.00E-05 3.69E-03

Igkv6-13 0.19 5.00E-05 3.58E-03 Actc1 0.23 5.00E-05 3.69E-03

Ighv1-50 0.22 5.00E-05 3.58E-03 Igkv3-7 0.25 5.00E-05 3.69E-03

Myl2 0.24 5.00E-05 3.58E-03 Arhgap22 0.26 5.00E-05 3.69E-03

Ighv1-18 0.24 5.00E-05 3.58E-03 Cyp2e1 0.28 5.00E-05 3.69E-03

Igkv4-72 0.26 5.00E-05 3.58E-03 Rpl21 0.29 1.00E-04 6.63E-03

Ighv1-72 0.30 5.00E-05 3.58E-03 Igkv4-58 0.30 3.00E-04 1.65E-02

Fam65a 0.31 5.00E-05 3.58E-03 Syt8 0.31 5.00E-05 3.69E-03

Ighv1-58 0.32 4.00E-04 2.20E-02 Mpz 0.31 5.00E-05 3.69E-03
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Analysis of the genetic pathways responsive to Scl-Ab
and load

Pathway enrichment analysis was performed in an effort to

identify the genetic circuits represented by the DEGs for each of

the group-wise comparisons. Pathway analysis identified many

circuits that were common across all comparisons, which likely

underlie the associated increase in bone formation response

found in functional analyses. These include extracellular matrix

organization and degradation, as well as collagen biosynthesis

and formation. In addition, some pathways were specifically

altered with loading or Scl-Ab treatment, however were not

altered further with combination load and Scl-Ab therapy. These

include ECM proteoglycans, integrin cell surface interactions,

and collagen degradation, TCF-dependent WNT signaling, and

other pathways involving cell-cell communication and matrix

organization (Supplemental Table S6). An unexpected finding

was alterations in Rho GTPase pathways that were associated

with loading in Scl-Ab-treated mice as well as by Scl-Ab

treatment in loadedmice. Key genes affected included Arhgap22

(0.27; 0.26), A2m (0.56; 0.57), Arhgap6 (0.51; 0.53), Srgap1 (1.48;

1.53), Chn1 (1.81; 1.89), and Ngef (1.82; 1.85).

Discussion

We have previously reported that Sost knockout mice show no

impairment of the response to cyclic compressive loading but

Fig. 6. Relative gene expression (counts per million/cpm) compared with the Vehicle Control group for Vehicle Loaded, Scl-Ab Control, and Scl-Ab

Loaded groups. Genes graphed include Wnt/b-catenin signaling pathway factors and orphan genes of interest with known involvement in bone

mechanotransduction. Significance (FDR< 0.05) for Comparisons 1–4 of differentially expressed genes (DEGs) shown: �Comparison 1; #Comparison 2;

†Comparison 3; ‡Comparison 4. Unable to obtain p value within Comparison 1 and 2 for Ptgs2 and Comparison 2 for Wnt1 and so not tested.

Fig. 7. VENN diagrams showing the number of differentially expressed genes (DEGs) common and unique within comparisons. (A) Load-related DEGs:

Comparison 1 compared with Comparison 3. #Comparison 3 (loading in the presence of Scl-Ab treatment) unique DEGs. (B) Scl-Ab-related DEGs:

Comparison 2 was compared with Comparison 4. ^Comparison 4 (Scl-Ab in the presence of loading) unique DEGs. (C) The DEGs unique to loading in the

presence of Scl-Ab treatment (#) were compared with DEGs unique to Scl-Ab in the presence of loading (^).
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rather an increased anabolic response compared with wild-type

mice.(20) A limitation of this prior study was that Sost knockout

bones undergoing loading possessed a higher bone mass

and thus altered biomechanical properties. In this study, Scl-Ab

and loading interventions commenced simultaneously. It was

hypothesized that this approach would better translate to

the clinical scenario of combining drug- and exercise-based

therapies.

Scl-Ab treatment for only a 2-week period produced

significant increases in bone density, cortical and trabecular

bone parameters, and bone anabolism in C57Bl/6 mice. The

osteogenic response of Scl-Ab within cortical bone was less

marked than that for loading treatment alone; however, Scl-Ab

had a greater effect within trabecular bone. A longer period

of Scl-Ab treatment may likely elicit a stronger osteogenic

responsewithin the cortical bone. However, this period of Scl-Ab

treatment did not produce maximal bone anabolism within

either bone compartment as it could be further enhanced by

biomechanical loading. Notably, the interaction between Scl-Ab

and the adaptive response to biomechanical load was only

synergistic in the cortical bone compartment. Thismay be due to

differential compensatory changes in gene regulation, however

the precise mechanism remains unclear.

These data are highly relevant to the future clinical use of

Scl-Ab in osteoporosis treatment and other conditions of bone

loss. Monthly Scl-Ab treatment (Romosozumab) in postmeno-

pausal osteoporotic women yielded decreases in vertebral

fractures during the trial period, but nonvertebral fracture rate

was unaffected.(34) It is possible that load-based exercise may

increase the efficacy of Scl-Ab, particularly for outcomes such as

reducing hip and long bone fractures.

A critical aim of this study was to examine the genetic

pathways underlying both the response to load and to Scl-Ab

treatment, to identify both commonalities and differences.

Notably, the Wnt/b-catenin signaling pathway has been

implicated both in the mechanism of sclerostin action(12) as

well as for mechanotransduction in bone.(21,35–40) Indeed, a

critical threshold of b-catenin and an intact Wnt/b-catenin

pathway are requirements for the anabolic response of bone to

mechanical loading.(38,41)

RNASeq was used to analyze the transcriptome and revealed

information regarding both specific DEGs and affected path-

ways. Pathway analysis showed that biomechanical load

caused significant alteration to the “TCF-dependent signaling

in response toWNT” pathway. Upregulated genes includedWnt/

b-catenin signaling agonists (Wnt1, Wnt4, Wnt5a) and receptors

(Fzd1, Fzd4).Wnt1was one of themost highly upregulated genes

after loading, in accordance with prior data.(33,42) Hypomorphic

Wnt1 alleles have been implicated in diseases of low bone

density,(43–46) and thus increased Wnt1 expression may con-

versely increase osteogenesis. Recently, osteocyte-expressed

Wnt1 has been shown to be important in bone development

and homeostasis.(47) Panx3, also amongst the highly upregulated

genes with loading, may also be important in the loading

response; it has interactionswithWnt/b-catenin signalingandhas

roles in inhibiting osteoprogenitor proliferation and promoting

cell cycle exit.(48)

In contrast to loading, Scl-Ab treatment did not comparably

affectWnt/b-cateninpathwaysorDEGs.Onepotential explanation

is that loading upregulates expression of Wnt/b-catenin pathway

factors on a transcriptional level, whereas Scl-Ab primarily

modulates downstream activation of b-catenin-dependent gene

Table 4. DEGs Common and Unique to a Comparison of DEGs Unique to Loading in the Presence of Scl-Ab Treatment (#) and DEGs

Unique to Scl-Ab in the Presence of Loading (^)

Unique DEGs: for Comparison 4 unique

DEGs (^) Common DEGs

Unique DEGs: for Comparison 3 unique

DEGs (#)

Pi15, 1700066M21Rik, Myoc, Mpz, Rftn2,

Dcbld1, Adamts2, Metrnl, Grb10, Ighv5-12,

Pxdc1, Arhgap22, Mmp14, Pnpla3,

Tnfrsf11b, Tuba1a, Gm8034, Rom1, Prg3,

Bmp2, Frzb, Hey1, Pcdh18, Gpx7, Bmp8a,

Pcdh7, Msi1, Gm27477, Gm27861,

Gm27867, Gm27868, Hotairm1, Igkv3-7,

A2m, Igkv5-48, Pdzrn3, B4galnt3, Ptms,

Acan, Ifitm5, Irx5, Pygo1, Cd109, Ryk,

Fam46a, Wbp5, Aebp1, Gm5805, Rai14,

Jam2, Pvrl3, Tmem45a, Tmem38b, Aplp1,

Gsg1l, Fxyd6, Tceal8, Myoz1, Snai2, Rcan2,

Acta2, Nnmt, Apln, Klf12, Smad9,

Smarca1, Ppfia2, Tm4sf1, Peg10, Dlx5,

Slc37a3, Hoxa10, Hoxa9, Tmem86a, Mrc2,

Dap, Casc4, Yipf5, Fibin, Pdgfc,

5730409E04Rik, Dnm3os, Ube2e2, Chsy1,

Sema5a, Emp2, Angpt4, Ccdc149,

Gm6377, Sh3bgrl, Glrx5, Scara3, Polr3d,

Hist2h2aa2, Hist2h3c1, Slc2a10, Abi2, Lbr,

Dixdc1, Arl1, Rhbdl2, Cdk14, Aldh1a2,

Lipc, Klhl13, Pdia5, Zfhx4, Mical3, Enpp6,

Cd63, Anxa8, Fhod3, Efr3b, Rhpn2, Gnb5,

Csnk1g3, Ift20, Frmd3, Igkv6-17, Kcnn1,

Inhbb, Entpd1, Cilp

Ackr3, Tfcp2l1, Ptgs2, Bend6, Dsel, Cfhr2,

Kera, Enpp1, Sox9, Slc1a4, Epx, Ighv1-55,

Ell2, Ear2, Ear6, Ear1, 3632451O06Rik,

Dpysl2, H2-Pb, Gal, Dkk1, Csrnp3, Lhx6,

Actc1, Lppr4, Gm12519, Zmpste24, Fras1,

Ephx4, Auts2, Ggcx, Nell1, Vimp, Cyp2e1,

Rplp2, Syt8, Jund, Cd97, Pgbd5, Gramd2,

Susd5, Atp1b3, Lonrf3, Arhgap6,

Rab11fip4, Ighv5-9-1, Sec61b, Klf4, Nbl1,

Rpl21, Tmem97, Serf1, Afap1l2, Gale,

Bcat1, Slc6a15, Srgap1, Nt5e, Adm, Aif1l,

Unc5c, Igkv4-58, Fam3c, Gm5269,

Gm10320, Pdgfa, Irx6, Basp1, Gdpd2,

Gm8113, Tmem200a, Hspb7, Ttc26, Ngef,

Ckb, Fbln7, Sdr9c7, Vit, Bmp7, Arl4d

Slc9a2, 1700030C10Rik, Gm28503,

RP23-152O2.3, Gm266, Ighv14-1, Ighv4-1,

Hist1h2ac, Igkv4-55, BC024978, Rpl27a,

Shank2, Fam65a, Lrrc15, Dpep2, Arfgap3,

Igkv4-57-1, Slc35a2, Adamtsl2, Tcerg1
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expression. Also, the short-term treatment of Scl-Ab and the

less profound anabolic response compared with loading

may also explain the reduced effect on the Wnt/b-catenin

pathway.

A major goal of the RNAseq analysis was to examine DEGs

and genetic circuits that could modulate the effects of dual

treatment with Scl-Ab and mechanical loading. Candidate gene

analysis found that load and Scl-Ab in combination yielded

synergistic increases in the expression of Wnt-related

genes including Wisp1, Dkk3, Cdh2, and Sfrp5. In addition, the

combined treatment led to considerable upregulation of

Ptgs2, Tnfrsf11b, and Timp1, factors previously associated

with mechanotransduction.(32,33) Comparative analysis of genes

identified by unbiased screening revealed 80 unique genes

altered with the combination of Scl-Ab and load versus either

treatment alone.

Of these 80 genes, Nell1 and Ptgs2 (also known as Cox2) were

particularly of interest.Nell1 encodes for a secreted protein that is

critical for normal skeletal development; overexpression causes

craniosynostosis(49,50) and deficiency results in cranial/vertebral

defects and undermineralization.(51) Nell1 has been shown to

regulate Wnt/b-catenin downstream of integrin receptor signal-

ing to produce effects on osteoblastic differentiation and

osteoclastic bone resorption.(52,53) Ptgs2/Cox2 is an isoform of

cyclooxygenase and is thus involved in the production of

prostaglandins.(54) Cox2 blockade has been shown to block

lamellar bone formation in response to in vivo mechanical

loading,(55) although in some situations it may be compensated

for by Cox1.(56) Prostaglandins have been shown to affect Wnt/

b-catenin signaling,(57,58) and Cox inhibition prevents sclerostin

downregulation after biomechanical loading of bone.(59)

An unexpected outcome of pathway analysis was identifying

significant alterations in the “Rho GTPase cycle” and “Signaling

by Rho GTPases” pathways that was associated with combined

treatment. Rho GTPases, a subgroup of the Ras superfamily of

small guanine nucleotide-binding proteins, have known roles in

mechanotransduction. This has been shown in aortic and

vascular smooth muscle cells, cardiac myocytes,(60–63) and most

recently osteoblasts.(64,65) There is evidence of Rho family

proteins andWnt/b-catenin signaling interactions within cancer

cells, developing embryos, and embryonic cells,(66–69) and

similar interactions within bone cells could be hypothesized.

A limitation of the RNAseq component of the study is

that analysis was not performed on a single subset of cells.

Importantly, the number of contaminating sequences from

outside the bone compartment was below 3% for all samples

based on a prior curated list.(31) Within the bone compartment,

however, there are a combination of cells housed that may

confound the data, such as osteoblasts, osteocytes, osteoclasts,

bone lining cells, osteoprogenitor, and endothelial cells.

However, because osteocytes comprise 90% to 95% of the

cellular bone compartment,(70) we deduce the RNA to be from

an osteocyte-rich population of cells.

In summary, this study examined the intersection between

Scl-Ab and biomechanical loading, which both can act via the

Wnt/b-catenin pathway. Combination therapy of loading and

Scl-Ab treatment had a more profound anabolic response than

either treatment alone. This may be clinically important for

future use of Scl-Ab in treating low bone mass. Mechanistically,

we have identified a number of genes belonging to Wnt

family, downstream Wnt/b-catenin factors, as well as several

notable novel circuits including Rho GTPase signaling. These

data illustrate the complexity involved with the response to

biomechanical loading but may reveal new avenues to target

more powerful anabolic stimuli in bone.
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1. Summary of novel findings  

Sclerostin and other Wnt-family antagonists have a critical role in bone formation and 

homeostasis. Consequently, significant academic and industry resources have been invested to 

target sclerostin as a means of promoting bone formation to treat osteoporosis and other conditions 

of low bone mass. Despite the promising findings from phase II and phase III trials for anti-

sclerostin antibody therapy (Scl-Ab) (1-3), there are considerable gaps in our knowledge regarding 

the mechanism of action of sclerostin and how it interacts with environmental conditions, such as 

biomechanical loading. This thesis describes a series of preclinical studies aimed to tackle these 

research questions. 

Chapter 2 investigated the effect of the ubiquitous genetic deletion of sclerostin on the bone’s 

response to changes in mechanical loading. Tibial unloading (disuse) and strain- and force-

matched biomechanical loading (axial cyclic compression) were applied to a Sost KO mouse line. 

Sclerostin was found to be essential for the bone response to unloading; Sost KO unloaded tibiae 

did not exhibit the bone loss seen in unloaded wild type tibiae. However, in an experiment of 

increased tibial loading, sclerostin was not required for an anabolic response within bone. 

Moreover, Sost KO tibiae showed an augmented anabolic response to mechanical loading that 

featured increased bone volume and formation. 

DKK1 is another Wnt-family antagonist that has potential as a bone therapeutic target. Chapter 3 

examined strain-matched and force-matched bone loading (axial compression) in the tibiae of 

Dkk1 KO mice. Non-loaded Dkk1 KO tibiae had an increased bone volume compared to wild type 

controls. Critically, complete deletion of DKK1 did not result in maximal bone anabolism, as the 

high bone formation and bone volume of Dkk1 KO mice were augmented with increased 

mechanical loading. Thus while DKK1 expression can be regulated by load, these data confirm 

that DKK1 is not essential for transducing the response to cyclic loading. Notably, Sost expression 

was not altered by DKK1 deficiency, however was similarly down-regulated by loading. 

In Chapter 4, Dkk1 KO mice were treated with a murine neutralizing antibody to sclerostin (Scl-

Ab) to induce dual deficiency of both Wnt antagonists, DKK1 and sclerostin. These were 

compared to genotype control mice treated with Scl-Ab, and also mice of all genotypes treated 

with vehicle. Both the Dkk1 KO mouse and Scl-Ab treatment resulted in increased bone volume, 

with Scl-Ab treatment having a greater effect on bone volume and density compared to DKK1 
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deficiency. Additional increases in bone volume were seen with the dual deficiency, with 

prominent and synergistic effects seen within cancellous bone. Bone formation was increased with 

Scl-Ab treatment, however no additive effect was seen within Dkk1 KO mice. Sclerostin 

expression was not observed to be altered by DKK1 deficiency or Scl-Ab treatment. 

Chapter 5 continued the theme of characterizing the nexus between mechanical loading and 

sclerostin deficiency. Short-term deficiency of sclerostin was induced via the administration of 

Scl-Ab, and mice received concomitant tibial axial compressive loading. Both interventions – Scl-

Ab treatment and loading – resulted in increased bone volume and formation. The combination 

produced additional increases, confirming the critical information that sclerostin antagonism and 

loading are not functionally redundant.  

Next, RNA sequencing (RNAseq) findings were presented describing gene expression in the 

cortical bone of the mid-diaphysis of loaded and non-loaded tibiae from Scl-Ab and vehicle treated 

mice. Notably, loading alone caused significant alteration to the “TCF dependent signalling in 

response to WNT” pathway, including Wnt/β-catenin signalling agonists (Wnt1, Wnt4, Wnt5a) and 

receptors (Fzd1, Fzd4). DKK1 expression, along with other Wnt factors, showed compensatory 

increases with Scl-Ab and loading, alone or in combination. This increase in DKK1 expression 

was significant with loading in the Scl-Ab treated mice, and not altered with loading in vehicle 

treated mice. Numerous genes were found to be specifically altered following two days of 

combination Scl-Ab and mechanical loading therapy. These included Wnt family members, some 

of which were synergistically increased over either monotherapy. The Rho GTPase signalling 

pathway was also highlighted to be significantly altered with combination loading and Scl-Ab.  
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2. Thesis themes, limitations, strengths, and potential clinical impact 

This thesis develops several key concepts within the field of bone mechanobiology and modulating 

the Wnt/β-catenin pathway.  

 

2.1. Sclerostin deficiency attenuates disuse-induced bone loss 

Unloading due to BTX-induced disuse decreased cortical bone volume and thickness, and 

trabecular bone volume and number, within wild type mice. In contrast, in Sost KO mice the bone 

losses associated with unloading were abrogated. These data confirm that sclerostin expression 

and the subsequent blockade of Wnt/β-catenin signalling are required for decreased bone volume 

associated with disuse, substantiating previous studies. Prior reports had shown that genetic knock-

out mice (4), and mice under short-term treatment with neutralising antibodies to sclerostin (5), 

display less bone loss with hind-limb suspension. Subsequent to our studies, comparable results 

were also presented in a hind-limb suspension disuse model in Sost KO mice (6).  

The confirmation of outcomes from the BTX-induced disuse study was important due to 

limitations in both hind-limb suspension and BTX-induced disuse models. Tail suspension 

decreases locomotion and exploration, and increases anxiety (7). Additionally there is some added 

mouse numbers as contralateral limbs cannot be used as controls and some wasted mice as they 

can get free from the suspension apparatus. The BTX model is not without its own caveats, as 

there potentially may be secondary effects due to myokines associated with muscle wastage (8). 

Further BTX effects wear off over a time. 

Prior studies examining disuse-induced bone loss and the protective effects of sclerostin deficiency 

have lacked a thorough assessment of resorption. It has been widely shown that unloading 

significantly elevates osteoclastic activity and bone resorption (9-16). However, within my data 

no alteration was seen in osteoclast number, or the proportion of the bone surface bound by 

osteoclasts, with unloading in either wild type or Sost KO genotypes (Chapter 2). Notably, the 

proportion of the bone surface bound by osteoclasts was significantly reduced in Sost KO mice 

though (control and unloaded tibiae). This does suggest a reduction in osteoclast activity, however 

may also be reasoned by the increased bone volume seen in the Sost KO mice.  
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It is unclear whether a reduction in bone catabolism is the sole mechanism in preventing bone loss 

in disuse in Sost KO mice, or whether an increase in bone formation is involved. Other papers 

investigating bone catabolism have analysed the dimensions of osteocyte resorption cavities (17), 

although we did not undertake such studies. Nevertheless, the lack of any measurable impact on 

bone anabolism in unloaded wild type and Sost KO tibiae suggests that effects on osteoblasts and 

osteocytes do not represent the primary mechanism. This contrasts data from a murine model of 

bilateral hind limb disuse (tail suspension), where a reduction in bone formation parameters were 

seen in wild type unloaded mice but not Sost KO mice (4). Yet in this study, resorption parameters 

were not assessed at all, making it impossible to conclude that anabolic changes were the sole 

cause.  

Importantly for clinical translation, my findings support trialling neutralising antibodies to 

sclerostin as a clinical therapy for preventing bone loss caused by disuse osteopenia. 

 

2.2. Wnt antagonist deficiency augments the response to loading  

The anabolic response of bone to mechanical loading was significantly increased with deficiency 

in Wnt antagonists. This finding was one of the most consistent across all of my research studies 

– being seen in Sost KO mice, Dkk1 KO mice, and also within C57Bl/6 mice treated with Scl-Ab. 

Thus my initial hypothesis – that exercise would be redundant with Wnt/β-catenin activating 

therapy – was disproven. Critically, these data also provide new mechanistic information regarding 

combining Wnt/β-catenin pathway activation and mechanical stimulation. Review of the recent 

literature also shows agreement with data from LRP5 gain-of-function mutation studies, which 

show an increased response to mechanical stimulation (18-20). The finding of mechanical loading 

having increased effects in Sost KO mice has also been since confirmed by another group (21). 

Notably, the statistical interaction between loading and genotype was significantly stronger for 

bone formation in the Sost KO and Dkk1 KO mice than in wild type mice. This confirms a 

synergistic response of sclerostin/DKK1 deficiency and increased mechanical bone loading. A 

mixed ANOVA analysis of data from Chapter 2 was performed subsequent to publication to assess 

the interactions between the between-subject effect of genotype (wild type, Sost KO) and the 

within-subject effect of loading (control, loaded limbs). These data are shown in Table 1 below. 

Conspicuously, the genotype:loading interaction was significant for bone volume within all   
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Table 1: Mixed ANOVA analysis of microCT and dynamic histomorphometry data, assessing 

the interaction between the between-subject effect of genotype (wild type, Sost KO) and the 

within-subject effect of loading (control, loaded limbs). 
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metaphyseal compartments, along with the mid-diaphyseal regions located 37% down the tibiae 

(p<0.01). The genotype:loading interaction were also significant for MS/BS and BFR/BS within 

the 37% cortical VOI, as assessed by dynamic histomorphometry (p<0.01). 

The anabolic increases seen within the loaded mice administered with Scl-Ab were however 

considerably less marked than for the genetically modified Sost KO mice. The osteogenic effect 

of neutralising antibodies to sclerostin was dose-related in Phase I clinical trials (22, 23). It may 

be that a higher dose rate of Scl-Ab or a longer dosing regimen alongside exercise could induce 

the synergistic anabolic response witnessed in the loaded tibiae of Sost KO mice.  

Of clinical relevance, these data advocate that load-based exercise may increase the efficacy of 

therapy with neutralising antibodies to sclerostin. This has promising implications for the treatment 

of low bone mass disease, such as osteoporosis. 

 

2.3. Combined deficiency of DKK1 and sclerostin 

To investigate any compensatory or redundancy effects to bone anabolism with deficiency in more 

than one Wnt antagonist, deficiency in both sclerostin and DKK1 were investigated (Chapter 4). 

The addition of Scl-Ab to the Dkk1 KO mouse increased bone volume above either single 

deficiency. Prominent and synergistic effects were seen within cancellous bone. This agrees with 

the hypothesis that combined Wnt/β-catenin activating therapies would have synergistic effects. 

Emerging data has shown that Wnt antagonists may be up-regulated to compensate for a deficiency 

in other family members (24-26). Thus combining Wnt/β-catenin activating treatments could 

overcome this negative feedback. Synergism with Dkk1 KO and Scl-Ab was seen mainly within 

the cancellous bone however. This may be a result of a more localised expression of DKK1 within 

cancellous bone, as has previously been suggested (27). Further, there is emerging evidence that 

DKK1 has limited expression throughout cancellous and cortical bone of the adult skeleton, unless 

stimulated by trauma (28). 

A recent study in ovariectomised (OVX) rats and intact mice examined the combination of 

sclerostin and DKK1 inhibition (26). OVX rats received a combination of sclerostin and DKK1 

neutralising antibodies, whereas mice received a unique bispecific antibody, neutralising both 

DKK1 and sclerostin. In both cases, treatments were compared to vehicle controls and animals 
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receiving a monotherapy. Areal BMD was increased in Scl-Ab/DKK1-Ab treated OVX rats 

compared to vehicle or monotherapy, and bone formation was synergistically increased. Closed 

fracture studies were also assessed following treatment of combination Scl-Ab/DKK1-Ab, or the 

bispecific antibody. Increases in callus volume and strength were seen above vehicle or 

monotherapy.  

Notably, within my data bone formation was similarly increased with Scl-Ab treatment across 

genotypes by the 12 week end-point, with no additive effect within Dkk1 KO mice. A hypothesis 

is that any augmented bone formation response due to DKK1 deficiency alongside Scl-Ab 

treatment may be transient and not measurable at the end-point assessed. Recently, a comparable 

murine study of weekly Scl-Ab dosing has shown that serum P1NP, a bone formation marker, is 

diminished by the third dose compared to aged-matched mice treated for the first time (29). 

Further, Col1a1 mRNA expression within bone was also significantly reduced by 6 weeks of 

dosing. Regardless, within a clinical setting combining multiple Wnt antagonists still may provide 

a more favourable osteogenic response than mono-therapy.  

 

2.4. Relating pre-clinical murine loading to human activity 

The strain produced within all loading studies (1200 µɛ) is intended to be comparable to an increase 

in higher-magnitude daily activity. A mechanical usage window has been previously proposed, 

describing the approximate strain on bone within windows of “disuse”, “physiological”, “overuse” 

and “pathological overload” (30). The strain of 1200 µɛ sits within the proposed “physiological” 

or “homeostasis” window, below “overuse” and above “disuse.” In contrast, strenuous loading has 

been measured in a number of vertebrates including human, horse, goose and sheep and found that 

such strain on bone is in a range of 2000-3500 µɛ (31).  

The frequency and cycle number (4 Hz, 1200 cycles) of load events within all loading studies of 

this thesis are likely the equivalent to an additional short burst of the higher-magnitude activity. 

Normal homeostatic daily functional activities have been suggested to be comprised of daily strain 

of <10 µɛ being frequent in occurrence, i.e. within the thousands, whist higher-magnitude daily 

strain >1000µɛ only occur a few times per day, as quantified in dogs, sheep and turkeys (32). Daily 

stress dynamics in turkeys and humans have also been investigated and corroborated by others (33, 

34). It is therefore not outside the scope of daily activity to increase the number of higher-
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magnitude activity events. Further, by doing so my data may indirectly suggest that increasing the 

higher-magnitude strain activities within normal daily life, by even a small number, may elicit an 

anabolic bone response. 

Importantly, it has been previously shown that an anabolic bone response to increased load can 

occur with both high-frequency low-magnitude strain (unit of deformation) occurrences (35) and 

also with low-frequency high-magnitude strain occurrences (36). However, Rubin and Lanyon, 

through their studies, have proposed that the preference for osteogenic mechanical stimulus be 

through a few load cycles of high-magnitude and high-frequency (36-38). 

Some published exercise studies have adopted high-magnitude, high-frequency loading. The most 

convincing and enduring outcomes have been seen in children. Even the incorporation of a small 

number of scheduled jumping exercises into the school week found significant increases in lumbar 

spine and femoral neck bone mineral content (39-41), showing that osteogenic improvements 

could be made through practical, sustainable high-magnitude daily activity.  

Studies looking at the effect of exercise on the adult bone has been limited by the common use of 

DXA to gain outcome measures (42). DXA outcome measures do not measure the geometric 

changes that are likely the most beneficial effect if increased loading-based exercise. Nevertheless, 

a head-to-head study of high-load low-repetition exercise versus endurance-based low-load high-

repetition exercise in postmenopausal women showed increased bone mass following the high-

load low-repetition training but not with endurance regimen (43). Another study within 

postmenopausal women showed that high-intensity training prevented the significant femoral neck 

and lumbar spine bone loss that occurred within control individuals (44), and high-impact exercise 

within premenopausal sedentary women resulted in a significant increase in femoral neck bone 

mineral density (45). 

 

2.5. Mechanisms underlying the augmented anabolic response to load 

2.5.1. Initial hypothesis 

The synergy between sclerostin deficiency and load was unexpected, and the focus of multiple 

mechanistic experiments. My primary hypothesis following these results was that other Wnt 

antagonists may show compensatory up-regulation (Chapters 2 and 3). Wnt factors, including 
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DKK1, Fzd, LRP6, Axin2, Naked, and Rspo are modulated by β-catenin dependent TCF/LEF 

transcription (46-49), and so negative feedback to Wnt/β-catenin activation is feasible. Further, 

elevated DKK1 expression is witnessed with sclerostin deficiency (24-26). 

In the case of sclerostin deficiency, up-regulation of fellow Wnt antagonists could potentially 

down-regulate following bone loading to cause the augmented anabolic response. Previously, 

DKK1 expression has been shown to decrease following bone loading, within a rat ulnae loading 

model (50). This theory has been further supported by a recent in vivo mechanical loading study 

within the same Sost KO mice as used within this thesis (21). Elevated DKK1 expression seen 

within the Sost KO mice was significantly down-regulated 8 hours after a single tibial loading 

session. Similarly, in the case of complete knockout of DKK1 other Wnt antagonists, such as 

sclerostin, may have increased expression. This increased expression could in turn be more 

profoundly down-regulated following mechanical bone loading to result in an augmented anabolic 

response.  

 

2.5.2. Limitations of gene profiling and mechanotransduction  

Dkk1 expression was not found to be decreased 48 hrs after loading commencement, but rather 

was increased (Chapter 5). The discrepancy between these findings versus those of Robling et al. 

and Pflanz et al. (21, 50) may be attributable to differences in the time-points at which RNA was 

extracted. I assessed gene expression 24 hours after two loading sessions (48 hours after the first 

load session). In contrast, the rat ulnae loading study assessed Dkk1 expression 24 hours after a 

single loading session (50). 

The study by Pflanz et al. adds further confusion. The gene expression of a selected number of 

genes was assessed following a single loading session in 10 week old mice, showing a significant 

decrease in Dkk1 expression 8 hours after loading in Sost KO mice, but no change within wild type 

mice at this same time-point (21). Further, Dkk1 (and Sost) expression was not significantly altered 

at 3 or 24 hours post-loading at the 10-week age, nor at no time-point at 26 weeks age. Sost 

expression was down-regulated within the rat ulnae study at the 24 hour time-point (50). These 

data suggest that gene expression analyses will vary depending on the time-point assessed. This 

concept has been confirmed within a study investigating the temporal changes of gene expression 
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with loading in rodent ulnae; time-dependent patterns of gene expression was seen by microarray 

across a period of 4 hrs to 32 days post-commencement of daily loading (51).  

Gene expression is likely to be dependent on spatial as well as temporal factors. Both were seen a 

recent murine tibial loading study that presented the transcriptional profile by RNAseq of cortical 

and cancellous bone at 3 and 24 hours post-mechanical loading (52). Cortical and cancellous bone 

had distinct gene expression, and the transcription profiles were markedly different at time-points 

3 and 24 hours following loading. In addition to the time-point assessed and the type of bone 

assessed, other conditions of model and study design including age, loading regimen, animal type, 

animal strain, bone type, and strain-related regions of a bone must all be considered when assessing 

and consolidating gene expression data. There is ample evidence within the literature for these 

factors effecting gene expression (21, 50, 53-55).  

 

2.5.3. Profiling of Wnt-responsive candidate bone genes 

The hypothesis of compensation by fellow Wnt antagonists following deficiency of DKK1 or 

sclerostin was investigated within several of my pre-clinical studies. 

Investigations into the changes in sclerostin expression were undertaken within the studies 

involving the Dkk1 KO mouse. I undertook evaluation of the expression of the Sost gene following 

two days of compressive axial loading of tibiae within Dkk1 KO and wild type mice, with RNA 

extracted 24 hours after the last loading cycle (Chapter 3). Notably, sclerostin levels were unaltered 

within Dkk1 KO mice, suggesting that DKK1 deficiency may not result in a compensatory feed-

back increase in sclerostin. This data represents the Sost expression within the cortical mid-

diaphysis only, however sclerostin expression was also not seen to alter by immunohistochemistry 

within cancellous or cortical bone of Dkk1 KO mice (Chapter 4).  

Furthermore, sclerostin expression was significantly down-regulated with loading (Chapter 3), as 

has previously been observed (50, 56). However, the down-regulation of sclerostin following 

loading was similar between wild type and Dkk1 KO mice, suggesting that regulation of sclerostin 

is not likely be the mechanism behind the augmented response to loading with DKK1 deficiency. 

These data agree with a previous study of DKK1-Ab administration to OVX rats, whereby authors 
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state that sclerostin expression was not altered with DKK1 deficiency (however data was not 

provided) (28). 

Cortical bone from the mid-diaphysis of loaded and non-loaded C57Bl/6 tibiae were assessed by 

RNASeq to investigate any notable genetic expression changes with mechanical loading, Scl-Ab 

treatment and with loading/Scl-Ab combination (Chapter 5). Events causing the augmented 

anabolic bone response with loading in Scl-Ab treated mice was of particular interest, with the 

initial hypothesis involving consequent down-regulation following bone loading of possibly up-

regulated fellow Wnt antagonists, such as DKK1. 

Notably, DKK1 expression was increased following loading, regardless of drug treatment (Chapter 

5). My work represents the transcriptional profile of cells from the murine tibial mid-diaphysis 

within a comparatively later snapshot of time post-loading. However, it remains that the 

augmented load response following blockade of the Wnt antagonist, sclerostin, is not likely to be 

solely a result of compensation from DKK1, or other Wnt antagonists. Although this may be a 

mechanism by which the anabolic response to mechanical loading is augmented, it is not likely to 

be the only or even primary mechanism. Other genes, including the Wnt factor Wisp1 and known 

mechanotransduction factors, Ptgs2, Tnfrsf11b, and Ptn were significantly altered with 

combination Scl-Ab and loading above monotherapy. These may be keen areas for future 

investigation. 

Particularly, the RNAseq data following loading and Scl-Ab treatment illustrates the complexity 

involved with the response to biomechanical loading and the possible intersection of many 

signalling pathways with the Wnt/β-catenin pathway downstream of Wnt-LRP5/6 signalling. This 

is a topic that has been expanding in recent years. Some of the cross-talk with the Wnt/β-catenin 

pathway following mechanical stimulation has been mentioned within Chapter 1, including focal-

adhesion and cell-cell adhesion connections, nitric oxide, prostaglandins, and also estrogen 

receptor and PTH signalling (57-67).  

An example within my data that contributes to the cross-talk theory is that COX-2 (encoded by 

Ptgs2) was shown to be significantly up-regulated with combination Scl-Ab and loading therapy, 

above either therapy alone. It is already known that mechanical loading induced bone formation is 

dependent on COX-2 formation of prostaglandins (68, 69). A recent publication suggests that 

prostaglandins are significant early responders to mechanical stimulation within bone and their 
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availability is likely mediated by COX-2 (64). Notably, β-catenin signalling, independent of 

LRP5/6, was activated in an in vivo mouse model as early as 1 hour post-mechanical loading (64). 

And this β-catenin signalling, and downstream down-regulation of sclerostin and DKK1, was 

inhibited when COX-2 was blocked by the COX inhibitor carprofen. This proposes that a COX-2 

dependent, LRP5/6 independent, early response releases prostaglandin, activates β-catenin 

signalling and sclerostin and DKK1 down-regulation. Consequently, the regulation of the Wnt 

antagonists, sclerostin and DKK1, by these early responses may provide a mechanism for 

additional Wnt/β-catenin modulation. 

Notably, within my RNAseq data, the Rho GTPase signalling pathway was significantly altered 

within tibiae of mice treated with a combination of Scl-Ab and mechanical loading, compared to 

tibiae of mice treated with only one of the therapies. GTPases are enzymes that bind and hydrolyse 

guanine nucleotide (GTP), behaving as a switch in the activity of a variety of physiological 

processes. Ras homologous small GTPases are activated during mechanical input (70), and the 

subgroup Rho GTPases have mechanotransduction roles within aortic and vascular smooth muscle 

cells, cardiac myocytes (71-73), and notably within osteoblasts (74-76). Additionally, one of the 

Rho GTPases, RhoA, mediates lineage commitment of MSCs in vitro in response to cell shape; 

MSCs adhered to a substrate underwent osteogenesis whilst rounded MSCs became adipocytes 

(77). Intriguingly, RhoA regulates stress fibre formation, which play an important role in cell 

adhesion, in response to mechanical strain (78). Within my data RhoA expression was not 

significantly altered within the combination Scl-Ab and mechanical loading group, above either 

monotherapy. However, Ngef (Ephexin-1) and Srgap1 (srGAP1) were significantly increased, and 

amongst other roles, Ephexin-1 and srGAP1 are known to activate RhoA (79, 80).  

 

2.6. A model for Wnt/β-catenin signalling and mechanotransduction 

I currently hypothesise that following mechanical loading there is a requirement for the Wnt/β-

catenin pathway to be “switched-on” to allow for mechanotransduction signal cascades. Although 

Wnt-LRP5/6 signalling undoubtedly plays a major role in the signalling transduction following 

mechanical stimulus, it is unlikely to be the sole mechanism involved and may not even be the 

earliest responder. An intact Wnt/β-catenin pathway is likely required to allow for β-catenin 
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mediated TCF/LEF transcription, which can be modulated by pathways that intersect the Wnt/β-

catenin pathway independent of LRP5/6.  

Two key studies have explored the importance of β-catenin in bone mechanotransduction. Javaheri 

et al. reported that deletion of a single copy of β-catenin within osteocytes ablates the anabolic 

response to loading (81). This suggests a minimum threshold of β-catenin expression, and thus an 

intact Wnt/β-catenin pathway, is critical for an anabolic response to mechanical loading. In 

contrast, Kang et al. more recently found that an anabolic bone response to loading can occur at 

the periosteal surface, even when β-catenin levels within DMP-1 expressing cells are significantly 

reduced (82). This raises the possibility that Wnt/LRP5 signalling may utilise other downstream 

factors independent of β-catenin to transduce a mechanosensory response.  

Some study design differences are apparent that could explain for the dissimilar outcomes between 

the Javaheri et al. and Kang et al. studies. These two studies are mostly comparable in experimental 

design: mice of similar age and mixed C57Bl/6x129 background, both utilising ulna loading and 

similar strain engendered (2800 µɛ versus 2500 µɛ). However the single allele deletion of β-catenin 

within the Javaheri et al. study was from conception whilst Kang et al. induced adult-onset deletion 

of β-catenin within DMP-1 expressing cells. Kang et al. describe an 80% decrease in β-catenin 

expression, however this cannot be directly compared to Javaheri et al. to determine a critical 

threshold as levels were not described. Notably, the Dmp1 promoter is not expressed in all 

osteocytes and is more active within early osteocytes (83) and so an inducible cre-recombinant 

deletion, as undertaken by Kang et al. may miss a number of the more mature osteocytes which 

could continue to respond to mechanical loading through β-catenin mediated mechanisms. Further 

to this, there is some evidence to an increased anabolic response to mechanical load with 

tamoxifen, though this effect is mainly seen within trabecular bone (84). Furthermore, tamoxifen 

is an estrogen receptor (ER) modulator, and ERα is crucial for bone to respond to mechanical load 

(85-87). Tamoxifen was utilised by Kang et al. to induce the cre-recombinant deletion of β-catenin, 

and it potentially may augment the response to mechanical loading. 

Despite the number of limitations within the Kang et al. study, β-catenin independent 

mechanosensory pathways capable of transducing a signal response to mechanical load may not 

yet be definitively discounted. If β-catenin is dispensable for periosteal bone formation to occur in 
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response to mechanical stimulation than studies will need to look wider than pathway interactions 

with the Wnt/β-catenin pathway to include those that are independent of β-catenin stabilisation.   
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3. Future directions 

3.1. Enhancing Scl-Ab therapy outcomes with exercise programs 

The data supporting using exercise to augment Scl-Ab therapy, particularly in cases of low bone 

mass, remains one of the most profound and exciting findings. The limitations of directly 

translating this pre-clinical work into clinical studies have been discussed. However, the potential 

of applying a brief program of high-magnitude and high-frequency stimulation (36-38) makes it a 

practical adjunctive therapy.  

Reviews on the subject of observational effects of exercise on bone suggests that walking- and 

jogging-based exercise have little impact in preventing osteoporosis, with resistance and weight-

bearing exercise having more potential (42, 88, 89). Such future clinical investigations into 

exercise plans alongside Scl-Ab treatment could ultimately potentially model some successfully 

implemented studies whereby bone mineral density improvements were correlated with resistance-

training in older adults (44, 90-93). 

 

3.1.1. Pre-clinical studies in aged mice 

As Scl-Ab is predicted to become a mainstay therapy for age-related osteoporosis it should be 

established whether age affects the augmented effect seen with mechanical loading alongside Scl-

Ab treatment. Experimental studies have shown that the anabolic bone response to mechanical 

loading is reduced with age in C57Bl/6 mice (21, 53, 94-97), and may explain in part why less 

marked osteogenic results have been seen in clinical adult and aged exercise studies.  

It is possible that Scl-Ab therapy may restore mechanoresponsiveness that is hindered in the aged. 

Recently, the abrogated load-induced bone formation response seen within aged wild type mice 

was restored within aged Sost KO mice (21). As sclerostin levels are known to be increased with 

age in humans, (98, 99) there is accumulating evidence that sclerostin may play an important role 

in age-related dampening of the mechanotransduction response.  

I propose a pre-clinical investigation into Scl-Ab treatment alongside mechanical loading in aged 

C57Bl/6 mice (26 weeks old), assessing the osteogenic response to mechanical loading. The study 

design would be similar to that of Chapter 5, however I recommend a longer initial Scl-Ab dose 

period, such as two weeks prior to loading, to improve osteogenic outcomes. The greater anabolic 
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effect of Scl-Ab within Chapter 5 was seen within the cancellous bone, with a less marked effect 

seen within the cortical bone. As the osteogenic effect of Scl-Ab is dose-dependent, (22) a longer 

dose period may improve cortical bone outcomes for combination Scl-Ab and mechanical loading 

therapy.  

 

3.1.2. Post-release monitoring of activity levels in Scl-Ab treated patients 

Within the clinical setting I recommend that investigations initially commence through post-

release monitoring of the impact of existing activity of individuals undergoing Scl-Ab therapy. 

Romosozumab/EVENITY (Scl-Ab developed by Amgen and UCB Pharma) has undergone Phase 

III clinical trials within postmenopausal women (3). Promising results of improved bone mass and 

reduced vertebral fractures means the drug may be set for achieving market approval soon. This 

however will depend on the US Food and Drug Administration’s (FDA) approval following recent 

disclosure of a safety concern of increased cardiovascular events occurring within romosozumab-

treated subjects (100). If romosozumab/EVENITY is released on to the market, a post-release trial 

could easily be implemented to assess the activity/sedentary levels of Scl-Ab treated individuals. 

This could be achieved through a method of a standardised survey.  

Two notable quantitative history recall questionnaires have been developed specifically and used 

clinically to obtain information regarding the type and frequency of physical activity performed in 

a designated past time-period (e.g. past month, year or lifetime) (101). The Exercise Vital Sign 

(EVS) questionnaire, is simple in its design, with only two items asking days per week and minutes 

per event of moderate-intensity physical activity (102). The Physical Activity Vital Sign (PAVS) 

questionnaire, is designed to obtain past and typical week moderate to vigorous physical activity 

(103). Such monitoring could assess activity and bone density correlations for those on Scl-Ab 

therapy and provide some valuable evidence regarding the level of activity and type of exercise 

that may improve osteogenic outcomes of Scl-Ab therapy. 

 

3.2. Pre-clinical studies combining Wnt-pathway antagonists and exercise 

It remains unclear whether combination therapy with dual Scl-Ab and DKK1-Ab alongside high-

magnitude exercise would further augment the osteogenic response, or whether there is some 
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redundancy with the three-tiered therapy. My data show within mice that bone anabolism is 

synergistically improved with combination DKK1 and sclerostin deficiency, and also separately 

with long-term sclerostin deficiency and mechanical loading. It is hypothesised that the anabolic 

response of bone to load will be further heightened by combined Scl-Ab/DKK1-Ab treatment. 

I recommend a murine study combining weekly DKK1-Ab and Scl-Ab treatment in C57Bl/6 mice 

with tibial mechanical loading. Based on the study by Pflanz et al. study showing restored load-

induced bone formation with sclerostin deficiency in aged mice (21), such a study would be 

optimally performed in performed in both adult and aged mice (10 weeks and 26 weeks). Bone 

volume, bone mineral density, cortical thickness, bone formation parameters would be important 

outcome measures to assess by microCT after 2 weeks of a 5 days/week loading regimen. 

Mechanical strength testing would also be a valuable end-point outcome to determine any physical 

improvements in the strength of the bone. A cyclic axial compression protocol of 1200 µɛ, 1200 

cycles, 4 Hz would allow for direct comparison to prior studies. In addition, gene expression could 

be measured at early response stages of 3, 8, and 24 hours post first loading cycle, and also the 

later response stage of 48 hours post the first loading cycle. Heightened Wnt/β-catenin signalling 

is expected, although the Rho GTPase signalling pathway would also be a candidate for specific 

interrogation. Other novel interactions could emerge from RNASeq data.  

 

3.3. The role of the Rho GTPase pathway in bone homeostasis and mechanotransduction 

The RNASeq analysis performed within my thesis provide some novel and notable findings. As 

mentioned, the Rho GTPase signalling pathway was altered with the combination Scl-Ab and 

mechanical loading therapy, above either monotherapy. Further investigations are required into 

the potential role that Rho GTPases may have in bone mechanotransduction.  

I recommend in vitro biomechanical loading studies to be undertaken on established murine cell 

lines for osteocytes (MLO-Y4), osteoblasts (MC3T3-E1) and MSCs (C3H10T1/2), and later upon 

murine primary osteocyte and osteoblast cells. Rho GTPases have been implicated in 

mechanotransduction within aortic and vascular smooth muscle cells and cardiac myocytes (71-

73), and also osteoblasts (74, 75). In vitro mechanical loading studies encompass a range of models 

including vibration, fluid flow and substrate strain, and these have been reviewed extensively for 
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both use in bone-derived and other cells (104-106). These studies could also include sclerostin 

inhibition (through Scl-Ab administration) as well as the exogenous addition of sclerostin.  

These studies should involve the biochemical inhibition and activation of RhoA to investigate the 

role of RhoA in bone mechanotransduction. RhoA is activated by Ephexin-1 and srGAP1, both of 

which were significantly increased with combination Scl-Ab and loading therapy in mice, and is a 

prime candidate within this research. RhoA abrogation can be achieved through the addition of C3 

exoenzyme (72). RhoA overexpression can be achieved through transfection of cells with 

constructs containing the genes encoding for constitutively activated RhoA (107, 108).  

Importantly, the gene and protein expression profiling should be undertaken for these experiments. 

Known mechanoresponders within osteocytes, including Cox-2 and β-catenin, could be assessed, 

along with osteogenic factors, such as Runx2, alkaline phosphatase and osteocalcin, within 

osteoblasts. As RhoA has been previously shown to mediate lineage commitment of MSCs in vitro 

in response to cell shape, likely through regulation of stress fibre formation and cell adhesion (77, 

78), chondrogenic, and adipogenic differentiation factors should be assessed alongside osteogenic 

factors, for example Sox9 and PPARγ. This could glean some information regarding MSC cell fate 

following mechanical stimulation and RhoA/sclerostin activation/inhibition.  

Importantly, the transcription profile of the Rho GTPase pathway factors would be valuable for all 

these in vitro studies, allowing the response assessment of other family members in addition to 

RhoA. In some cases it may be the activity of a factor, rather than the transcription levels that 

should be assessed. Rac1, in particular, is a candidate of interest whereby activity has a known 

effect of β-catenin/TCF mediated transcription, rather than expression level (109). 

 

3.4. Interaction between Rho GTPase and Wnt/β-catenin pathways 

Rho family proteins have been previously reported to interact with the Wnt/β-catenin pathway. 

These are limited to cancer cells, developing embryos, and embryonic cells (109-112), however it 

is likely that such similar interactions could occur within bone cells. A pertinent example of this 

interaction was seen in a colon cancer cell line. β-catenin/TCF transcription was enhanced with 

activated Rac, a Rho GTPase family member, and β-catenin/TCF transcription was inhibited by 

dominant-negative Rac (109). The theory is that Rac enhances β-catenin accumulation and that 
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Rac1 facilitates the transfer of β-catenin into the nucleus (109, 110). Rho GTPase interactions may 

be a primary mechanism for the enhanced anabolism seen with combination Scl-Ab and 

mechanical loading therapy, though investigation is required to confirm this. Rac was not 

significantly altered with combination Scl-Ab and loading therapy, however Ephexin-1 and 

srGAP1 (which had increased expression) are known to activate Rac (79, 80). Importantly, it has 

previously been shown that it is the activation of Rac1, not the expression levels that impact β-

catenin/TCF-mediated transcription (109).  

Rho GTPases also have a defined central role within the (non-canonical Wnt) PCP pathway (113). 

Amongst other processes Wnt-PCP activation is known to regulate osteoblastogenesis and 

osteoclastogenesis (114). The PCP pathway organises the actin cytoskeleton through the regulation 

of cell polarity and convergent extension movements during axis formation (112, 115, 116). These 

are achieved through two divergent pathways involving the small GTPases Rac and Rho, both 

activated by Fzd/Dvl. Rac activation stimulates c-Jun N-terminal Kinase (JNK) and nemo-like 

kinase (NLK) signalling cascades (117, 118). Notably, NLK has a known ability to dissolve the 

binding of β-catenin to transcriptional factors and thus antagonising the Wnt/β-catenin pathway 

(119, 120). The alteration of the Rho GTPase signalling seen with combination Scl-Ab and loading 

therapy may also be a result of heightened non-canonical signalling, with downstream effects of 

osteoblastogenesis and osteoclastogenesis, and also potential interaction with the Wnt/β-catenin 

pathway. These theories are yet to be investigated.  

With Rho GTPase signalling altered with combination Scl-Ab and loading, above either 

monotherapy (Chapter 5), this remains an important focus for future studies. Similar to studies 

undertaken within colon cells (109, 110), in vitro investigations could be undertaken to assess 

whether β-catenin/TCF transcription can be modulated by Rac within bone-derived cells, 

specifically exploring whether Rac enhances β-catenin accumulation and Rac1 facilitates β-catenin 

nuclear transfer. 

A series of in vitro investigations is recommended. Rac1 activation status could be first determined 

within a panel of in vitro cell lines (MLO-Y4, MC3T3-E1 and C3H10T1/2) and primary osteocyte 

and osteoblast cells. Rac1-GTP (activity) levels can be determined using a Rac activity Assay kit 

(Upstate Biotechnology Inc, NY, USA). Next, β-catenin/TCF transcription could be assessed 

within a chosen in vitro cell line following blockade or constitutive activation of Rac1. Such Rac1 



Chapter 6: Discussion 

189 
 

blockade/activation has previously been achieved through transfection of mutated Rac1, and β-

catenin/TCF transcription levels assessed via luciferase activity following transfection with 

TOPFLASH to a TCF-responsive promoter (109). Following these baseline studies, Rac1 and β-

catenin/TCF transcription activities could then be assessed following the addition of exogenous 

sclerostin and the inhibition of sclerostin (Scl-Ab). These studies would provide some valuable 

insight into the interaction of Rac1 and the Wnt/β-catenin pathway and downstream β-

catenin/TCF-mediated transcription responses.  
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4.  Conclusion 

For bone mechanotransduction, the mechanisms, mechanosensors, and signal transducers are 

numerous, complex, and far from elucidated. Wnt/β-catenin signalling is nevertheless critical for 

this process and modulating this pathway produces profound effects on bone formation, bone 

resorption, and ultimately bone mass.  

In this thesis, the crosstalk between the Wnt/β-catenin pathway and biomechanical loading was 

examined. Increased Wnt/β-catenin signalling was found to augment the response of bone to 

increased mechanical loading. This crucially confirms that exercise is not redundant with therapies 

that activate the Wnt/β-catenin pathway, such as Scl-Ab, rejecting the first hypothesis of this thesis. 

Indeed these therapies may enhance the response to exercise. While this may be partly due to 

compensation by DKK1 or other Wnt antagonists, our data suggests this is unlikely to be the sole 

cause. This rejects the third hypothesis of this thesis. Still, assessing the effects of dual DKK1 and 

sclerostin deficiency on bone anabolism suggests that combining Wnt/β-catenin activating 

therapies can yield synergistic effects on bone anabolism, confirming the second hypothesis of this 

thesis. A great deal more work is required within this area of research due to gene transcription 

being temporally sensitive, as well as affected by differences in model and study design. 

This thesis has significant translational impact in terms of predicting the utility of neutralising 

antibodies to sclerostin in the context of loading and exercise. These data support the future clinical 

use of such antibodies within osteoporosis treatment and other conditions of bone-loss, whereby 

load/resistance based exercise can increase the efficacy of therapy. Furthermore, new genetic 

circuits (such as Wnt/β-catenin cross-talk with the Rho GTPase signalling pathway) represent 

targets for future pre-clinical studies. These investigations may identify new drug targets for 

treating osteoporosis and other bone fragility disorders.  
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