5 research outputs found

    NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-κB signaling

    Get PDF
    Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1−/− mice and a model of urethane-induced tumorigenesis. Nlrx1−/− mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-λB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma

    A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations

    No full text
    Abstract Background Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays. Compared to conventional 2D in vitro or in vivo animal model systems, three-dimensional (3D) in vitro platforms have been shown to more closely recapitulate human physiology, providing a relevant, more efficient strategy for evaluating acute toxicity and chronic outcomes in a tiered nanomaterial toxicity testing paradigm. Results As inhalation is an important route of nanomaterial exposure, human lung fibroblasts and epithelial cells were co-cultured with macrophages to form scaffold-free 3D lung microtissues. Microtissues were exposed to multi-walled carbon nanotubes, M120 carbon black nanoparticles or crocidolite asbestos fibers for 4 or 7 days, then collected for characterization of microtissue viability, tissue morphology, and expression of genes and selected proteins associated with inflammation and extracellular matrix remodeling. Our data demonstrate the utility of 3D microtissues in predicting chronic pulmonary endpoints following exposure to MWCNTs or asbestos fibers. These test nanomaterials were incorporated into 3D human lung microtissues as visualized using light microscopy. Differential expression of genes involved in acute inflammation and extracellular matrix remodeling was detected using PCR arrays and confirmed using qRT-PCR analysis and Luminex assays of selected genes and proteins. Conclusion 3D lung microtissues provide an alternative testing platform for assessing nanomaterial-induced cell-matrix alterations and delineation of toxicity pathways, moving towards a more predictive and physiologically relevant approach for in vitro NP toxicity testing

    A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: Protocol and statistical considerations

    No full text
    Purpose: Kidney disease caused by type 1 diabetes can progress to end stage renal disease and can increase mortality risk. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) plays a major role in producing oxidative stress in the kidney in diabetes, and its activity is attenuated by GKT137831, an oral Nox inhibitor with predominant inhibitory action on Nox-1 and Nox − 4. Previous studies have demonstrated renoprotective effects with GKT137831 in various experimental models of type 1 diabetes-related kidney disease. This study will evaluate the effect of GKT137831 in treating clinical diabetic kidney disease. Design: This is a multi-center, randomized, placebo-controlled trial, parallel arm study evaluating the effect on albuminuria of treatment with GKT137831 400 mg BID for 48 weeks. The study will randomize 142 participants who have persistent albuminuria and estimated glomerular filtration rate (eGFR) at baseline of at least 40 ml/min/1.73m2. Primary outcome measures: Difference between arms in urine albumin to creatinine ratio. Secondary outcome measures include eGFR. Conclusion: This study is important because it may identify a new way of slowing renal disease progression in people with type 1 diabetes and albuminuria already receiving standard of care treatment
    corecore