2 research outputs found
Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines
<p>Abstract</p> <p>Background</p> <p>Diagnostic ultrasound provides a method of analysing soft tissue structures of the musculoskeletal system effectively and reliably. The aim of this study was to evaluate within and between session reliability of measuring muscle dorso-plantar thickness, medio-lateral length and cross-sectional area, of the abductor hallucis muscle using two different ultrasound machines, a higher end Philips HD11 Ultrasound machine and clinically orientated Chison 8300 Deluxe Digital Portable Ultrasound System.</p> <p>Methods</p> <p>The abductor hallucis muscle of both the left and right feet of thirty asymptomatic participants was imaged and then measured using both ultrasound machines. Interclass correlation coefficients (ICC) with 95% confidence intervals (CI) were used to calculate both within and between session intra-tester reliability. Standard error of the measurement (SEM) calculations were undertaken to assess difference between the actual measured score across trials and the smallest real difference (SRD) was calculated from the SEM to indicate the degree of change that would exceed the expected trial to trial variability.</p> <p>Results</p> <p>The ICCs, SEM and SRD for dorso-plantar thickness and medial-lateral length were shown to have excellent to high within and between-session reliability for both ultrasound machines. The between-session reliability indices for cross-sectional area were acceptable for both ultrasound machines.</p> <p>Conclusion</p> <p>The results of the current study suggest that regardless of the type ultrasound machine, intra-tester reliability for the measurement the abductor hallucis muscle parameters is very high.</p
Ultrasound evaluation of the abductor hallucis muscle: Reliability study
© 2008 Cameron et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens