1 research outputs found

    Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation

    Full text link
    [EN] In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical analysis and inductively coupled plasma mass spectroscopy (ICP). Two different phase inversion techniques, Non-Solvent Induced Phase Separation (NIPS) and Vapour-Induced Phase Separation (VIPS)/NIPS, were applied to study the effect of fabrication procedure on the membrane structure and properties. Membranes were characterized by SEM, AFM, pore size, porosity, contact angle and mechanical tests, and finally tested for photocatalytic methylene blue (MB+) degradation under visible light irradiation. The effect of different pH values of dye aqueous solutions on the photocatalytic efficiency was investigated. Finally, the influence of NaCl salt on the MB+ photodegradation process was also evaluated.The authors acknowledge the financial support from Iran Science Ministry. The authors also sincerely thank the Institute on Membrane Technology, National Research Council of Italy (ITM-CNR) for kindly collaborate.Alyarnezhad, S.; Marino, T.; Parsa, JB.; Galiano, F.; Ursino, C.; García Gómez, H.; Puche, M.... (2020). Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. E-Polymers. 12(7):1-19. https://doi.org/10.3390/polym12071509S119127Figoli, A., Ursino, C., Galiano, F., Di Nicolò, E., Campanelli, P., Carnevale, M. C., & Criscuoli, A. (2017). Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. Journal of Membrane Science, 522, 192-201. doi:10.1016/j.memsci.2016.08.066Dao, V.-D., Vu, N. H., & Choi, H.-S. (2020). All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. Journal of Power Sources, 448, 227388. doi:10.1016/j.jpowsour.2019.227388Dao, V.-D., Vu, N. H., & Yun, S. (2020). Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 68, 104324. doi:10.1016/j.nanoen.2019.104324Dao, V.-D., & Choi, H.-S. (2018). Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Global Challenges, 2(2), 1700094. doi:10.1002/gch2.201700094Pastrana-Martínez, L. M., Morales-Torres, S., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2015). Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Research, 77, 179-190. doi:10.1016/j.watres.2015.03.014Zhang, X., Wang, D. K., & Diniz da Costa, J. C. (2014). Recent progresses on fabrication of photocatalytic membranes for water treatment. Catalysis Today, 230, 47-54. doi:10.1016/j.cattod.2013.11.019Athanasekou, C. P., Moustakas, N. G., Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., … Falaras, P. (2015). Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 178, 12-19. doi:10.1016/j.apcatb.2014.11.021Athanasekou, C. P., Romanos, G. E., Katsaros, F. K., Kordatos, K., Likodimos, V., & Falaras, P. (2012). Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. Journal of Membrane Science, 392-393, 192-203. doi:10.1016/j.memsci.2011.12.028Romanos, G. E., Athanasekou, C. P., Katsaros, F. K., Kanellopoulos, N. K., Dionysiou, D. D., Likodimos, V., & Falaras, P. (2012). Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. Journal of Hazardous Materials, 211-212, 304-316. doi:10.1016/j.jhazmat.2011.09.081Zhang, W., Dong, F., Xiong, T., & Zhang, Q. (2014). Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. Ceramics International, 40(7), 9003-9008. doi:10.1016/j.ceramint.2014.01.112Dadvar, E., Kalantary, R. R., Ahmad Panahi, H., & Peyravi, M. (2017). Efficiency of Polymeric Membrane Graphene Oxide-TiO2for Removal of Azo Dye. Journal of Chemistry, 2017, 1-13. doi:10.1155/2017/6217987Simone, S., Galiano, F., Faccini, M., Boerrigter, M., Chaumette, C., Drioli, E., & Figoli, A. (2017). Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. Fibers, 5(2), 14. doi:10.3390/fib5020014Liu, G., Han, K., Ye, H., Zhu, C., Gao, Y., Liu, Y., & Zhou, Y. (2017). Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chemical Engineering Journal, 320, 74-80. doi:10.1016/j.cej.2017.03.024Djafer, L., Ayral, A., & Ouagued, A. (2010). Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology, 75(2), 198-203. doi:10.1016/j.seppur.2010.08.001Jung, J.-T., Lee, W.-H., & Kim, J.-O. (2016). Photodegradation and permeability of conventional photocatalytic reactor and two different submerged membrane photocatalytic reactors for the removal of humic acid in water. Desalination and Water Treatment, 57(55), 26765-26772. doi:10.1080/19443994.2016.1189700Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., … Fan, J. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 520, 281-293. doi:10.1016/j.memsci.2016.07.060Gao, Y., Hu, M., & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 455, 349-356. doi:10.1016/j.memsci.2014.01.011Zhao, H., Chen, S., Quan, X., Yu, H., & Zhao, H. (2016). Integration of microfiltration and visible-light-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 194, 134-140. doi:10.1016/j.apcatb.2016.04.042Cruz-Ortiz, B. R., Hamilton, J. W. J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, D. A., Sharma, P. K., … Byrne, J. A. (2017). Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chemical Engineering Journal, 316, 179-186. doi:10.1016/j.cej.2017.01.094Galiano, F., Song, X., Marino, T., Boerrigter, M., Saoncella, O., Simone, S., … Figoli, A. (2018). Novel Photocatalytic PVDF/Nano-TiO2 Hollow Fibers for Environmental Remediation. Polymers, 10(10), 1134. doi:10.3390/polym10101134Szymański, K., Morawski, A. W., & Mozia, S. (2016). Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 305, 19-27. doi:10.1016/j.cej.2015.10.024Marino, T., Blefari, S., Di Nicolò, E., & Figoli, A. (2017). A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing and Synthesis, 6(3). doi:10.1515/gps-2016-0165Benhabiles, O., Galiano, F., Marino, T., Mahmoudi, H., Lounici, H., & Figoli, A. (2019). Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules, 24(4), 724. doi:10.3390/molecules24040724Marino, T., Russo, F., & Figoli, A. (2018). The Formation of Polyvinylidene Fluoride Membranes with Tailored Properties via Vapour/Non-Solvent Induced Phase Separation. Membranes, 8(3), 71. doi:10.3390/membranes8030071Liu, Z., Miao, Y.-E., Liu, M., Ding, Q., Tjiu, W. W., Cui, X., & Liu, T. (2014). Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. Journal of Colloid and Interface Science, 424, 49-55. doi:10.1016/j.jcis.2014.03.009Athanasekou, C. P., Morales-Torres, S., Likodimos, V., Romanos, G. E., Pastrana-Martinez, L. M., Falaras, P., … Silva, A. M. T. (2014). Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Applied Catalysis B: Environmental, 158-159, 361-372. doi:10.1016/j.apcatb.2014.04.012Rao, G., Zhang, Q., Zhao, H., Chen, J., & Li, Y. (2016). Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal, 302, 633-640. doi:10.1016/j.cej.2016.05.095Chen, W., Ye, T., Xu, H., Chen, T., Geng, N., & Gao, X. (2017). An ultrafiltration membrane with enhanced photocatalytic performance from grafted N–TiO2/graphene oxide. RSC Advances, 7(16), 9880-9887. doi:10.1039/c6ra27666kShao, F., Xu, C., Ji, W., Dong, H., Sun, Q., Yu, L., & Dong, L. (2017). Layer-by-layer self-assembly TiO 2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination, 423, 21-29. doi:10.1016/j.desal.2017.09.007Chen, R., & Liu, H. (2011). Preparation of Cr-doped TiO2/SiO2 Photocatalysts and their Photocatalytic Properties. Journal of the Chinese Chemical Society, 58(7), 947-954. doi:10.1002/jccs.201190149Morris, R. E., Krikanova, E., & Shadman, F. (2004). Photocatalytic membrane for removal of organic contaminants during ultra-purification of water. Clean Technologies and Environmental Policy, 6(2), 96-104. doi:10.1007/s10098-003-0198-7Lopez, L. C., Buonomenna, M. G., Fontananova, E., Iacoviello, G., Drioli, E., d’ Agostino, R., & Favia, P. (2006). A New Generation of Catalytic Poly(vinylidene fluoride) Membranes: Coupling Plasma Treatment with Chemical Immobilization of Tungsten-Based Catalysts. Advanced Functional Materials, 16(11), 1417-1424. doi:10.1002/adfm.200500502Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF-TiO 2 membranes for water treatment. Chemical Engineering Science, 123, 283-291. doi:10.1016/j.ces.2014.10.047Safarpour, M., Vatanpour, V., & Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 393, 65-78. doi:10.1016/j.desal.2015.07.003Mahlambi, M. M., Vilakati, G. D., & Mamba, B. B. (2014). Synthesis, Characterization, and Visible Light Degradation of Rhodamine B Dye by Carbon-Covered Alumina Supported Pd-TiO2/Polysulfone Membranes. Separation Science and Technology, 49(14), 2124-2134. doi:10.1080/01496395.2014.917105Kumar, M., Gholamvand, Z., Morrissey, A., Nolan, K., Ulbricht, M., & Lawler, J. (2016). Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. Journal of Membrane Science, 506, 38-49. doi:10.1016/j.memsci.2016.02.005Zhang, X., Lang, W.-Z., Yan, X., Lou, Z.-Y., & Chen, X.-F. (2016). Influences of the structure parameters of multi-walled carbon nanotubes(MWNTs) on PVDF/PFSA/O-MWNTs hollow fiber ultrafiltration membranes. Journal of Membrane Science, 499, 179-190. doi:10.1016/j.memsci.2015.10.034Castro-Muñoz, R., Galiano, F., de la Iglesia, Ó., Fíla, V., Téllez, C., Coronas, J., & Figoli, A. (2019). Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Separation and Purification Technology, 224, 265-272. doi:10.1016/j.seppur.2019.05.034Grasso, G., Galiano, F., Yoo, M. J., Mancuso, R., Park, H. B., Gabriele, B., … Drioli, E. (2020). Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 604, 118017. doi:10.1016/j.memsci.2020.118017Yao, Y., Miao, S., Yu, S., Ping Ma, L., Sun, H., & Wang, S. (2012). Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 379(1), 20-26. doi:10.1016/j.jcis.2012.04.030Zhang, X., Cheng, C., Zhao, J., Ma, L., Sun, S., & Zhao, C. (2013). Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chemical Engineering Journal, 215-216, 72-81. doi:10.1016/j.cej.2012.11.009Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453Hou, W.-C., & Wang, Y.-S. (2017). Photocatalytic Generation of H2O2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustainable Chemistry & Engineering, 5(4), 2994-3001. doi:10.1021/acssuschemeng.6b02635Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034Li, S., Cui, Z., Zhang, L., He, B., & Li, J. (2016). The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. Journal of Membrane Science, 513, 1-11. doi:10.1016/j.memsci.2016.04.035Tseng, H.-H., Zhuang, G.-L., & Su, Y.-C. (2012). The effect of blending ratio on the compatibility, morphology, thermal behavior and pure water permeation of asymmetric CAP/PVDF membranes. Desalination, 284, 269-278. doi:10.1016/j.desal.2011.09.011Rehan, Z., Gzara, L., Khan, S., Alamry, K., El-Shahawi, M. S., Albeirutty, M., … Asiri, A. (2016). Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Patents on Nanotechnology, 10(3), 231-251. doi:10.2174/1872210510666160429145228Mousavi, S. M., & Zadhoush, A. (2017). Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 532, 47-57. doi:10.1016/j.memsci.2017.03.006Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, L., & Loh, C. H. (2011). Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 369(1-2), 329-338. doi:10.1016/j.memsci.2010.12.008Russo, F., Galiano, F., Pedace, F., Aricò, F., & Figoli, A. (2019). Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustainable Chemistry & Engineering, 8(1), 659-668. doi:10.1021/acssuschemeng.9b06496Russo, F., Castro-Muñoz, R., Galiano, F., & Figoli, A. (2019). Unprecedented preparation of porous Matrimid® 5218 membranes. Journal of Membrane Science, 585, 166-174. doi:10.1016/j.memsci.2019.05.036Marino, T., Galiano, F., Simone, S., & Figoli, A. (2018). DMSO EVOL™ as novel non-toxic solvent for polyethersulfone membrane preparation. Environmental Science and Pollution Research, 26(15), 14774-14785. doi:10.1007/s11356-018-3575-9Bui, V.-T., Dao, V.-D., & Choi, H.-S. (2016). Transferable thin films with sponge-like porous structure via improved phase separation. Polymer, 101, 184-191. doi:10.1016/j.polymer.2016.08.063Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. Journal of Membrane Science, 501, 169-178. doi:10.1016/j.memsci.2015.12.004Xie, Q., Xu, J., Feng, L., Jiang, L., Tang, W., Luo, X., & Han, C. C. (2004). Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure. Advanced Materials, 16(4), 302-305. doi:10.1002/adma.200306281Razmjou, A., Arifin, E., Dong, G., Mansouri, J., & Chen, V. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 415-416, 850-863. doi:10.1016/j.memsci.2012.06.004Teow, Y. H., Ooi, B. S., & Ahmad, A. L. (2017). Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. Journal of Water Process Engineering, 15, 89-98. doi:10.1016/j.jwpe.2016.03.005Wenzel, R. N. (1936). RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988-994. doi:10.1021/ie50320a024Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429-439. doi:10.1016/j.jcis.2017.05.068Liu, Y., Jin, W., Zhao, Y., Zhang, G., & Zhang, W. (2017). Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 206, 642-652. doi:10.1016/j.apcatb.2017.01.075Qin, J., Zhang, X., Yang, C., Cao, M., Ma, M., & Liu, R. (2017). ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Applied Surface Science, 392, 196-203. doi:10.1016/j.apsusc.2016.09.043Oliveira, L. C. A., Gonçalves, M., Guerreiro, M. C., Ramalho, T. C., Fabris, J. D., Pereira, M. C., & Sapag, K. (2007). A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A: General, 316(1), 117-124. doi:10.1016/j.apcata.2006.09.027Houas, A. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145-157. doi:10.1016/s0926-3373(00)00276-9Kamble, S. P., Mangrulkar, P. A., Bansiwal, A. K., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves. Chemical Engineering Journal, 138(1-3), 73-83. doi:10.1016/j.cej.2007.05.030Sirtori, C., Agüera, A., Gernjak, W., & Malato, S. (2010). Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Research, 44(9), 2735-2744. doi:10.1016/j.watres.2010.02.006Yap, P.-S., & Lim, T.-T. (2011). Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental, 101(3-4), 709-717. doi:10.1016/j.apcatb.2010.11.013Stuart, M. A. C., Fleer, G. J., Lyklema, J., Norde, W., & Scheutjens, J. M. H. M. (1991). Adsorption of Ions, Polyelectrolytes and Proteins. Advances in Colloid and Interface Science, 34, 477-535. doi:10.1016/0001-8686(91)80056-
    corecore