12 research outputs found

    Anti-Annexin V Antibodies: Association with Vascular Involvement and Disease Outcome in Patients with Systemic Sclerosis

    Get PDF
    Background: Systemic Sclerosis (SSc) is characterized by skin thickening, fibrosis and vascular obliteration. The onset and course are heterogeneous. Prominent features include autoimmunity, inflammation and vascular damage. Aim of study: To measure the level of serum Anti-Annexin V antibodies in SSc patients and to study its significance in relation to vascular damage in these patients. Patients and methods: Twenty patients with SSc (12 with diffuse SSc and 8 with the limited form) and 10 healthy age and sex matched volunteers as controls were all subjected to routine laboratory testing and immunological profiling including antinuclear, anti-Scl-70, anticentomere, anticardiolipin antibodies and anti-annexin V antibodies titres. Vascular damage was assessed by clinical examination and assessment of the disease activity score, nailfold capillaroscopy and colour flow Doppler of the renal arteries; Doppler echocardiography was used for assessing pulmonary hypertension. Results: Anti-annexin V antibodies were detected in 75% of patients. Comparisons between anti-annexin V in diffuse and limited subgroups showed no significance; however a statistically significant positive correlation was found between Anti-annexin V titre and the degree of vascular damage in SSc patients. Anti-annexin V increased significantly in patients with severe vascular damage in comparison with those less affected (15.3 ± 6.6 vs. 11.25 ± 3.6, P , 0.05). A significant positive correlation was found between Anti-annexin V titre and both the ACL titre (r = 0.79, P , 0.001) and the resistive index of the main renal artery (r = 0.42, P , 0.05). Conclusion: Anti-annexin V antibodies were significantly present in sera of patients with SSc. Patients with more severe forms of vascular damage had higher titres of these antibodies. Anti-annexin V antibodies are a sensitive predictor of vascular damage in SSc and could serve as a useful parameter in discriminating patients with a higher risk of vascular affection from those without

    Three-Dimensional Histologic, Immunohistochemical and Multiplex Immunofluorescence Analysis of Dynamic Vessel Co-Option of Spread Through Air Spaces (STAS) in Lung Adenocarcinoma

    No full text
    BACKGROUND: Spread through air spaces (STAS) is a method of invasion in lung adenocarcinoma, associated with tumor recurrence and poor survival. The spatial orientation of STAS cells/clusters to the lung alveolar parenchyma is not known. The aim of this study was to utilize high resolution and high-quality three-dimensional (3D) reconstruction of images from immunohistochemistry (IHC) and multiplex immunofluorescence (IF) experiments to understand the spatial architecture of tumor cell clusters by STAS in the lung parenchyma. METHODS: Four lung adenocarcinomas: 3 micropapillary (MIP) predominant and 1 solid (SN) predominant adenocarcinoma subtypes, were investigated. A 3D reconstruction image was created from the formalin fixed paraffin-embedded (FFPE) blocks. 350 serial sections were obtained and stained with hematoxylin and eosin (H&E) (100 slides), IHC (200 slides), and multiplex IF (50 slides) with the following antibodies: CD31, collagen type 4, TTF-1 and E-Cadherin. Whole slide images (WSIs) were reconstructed into 3D images for evaluation. RESULTS: Serial 3D image analysis by H&E as well as IHC and IF showed the MIP clusters and SN nests of STAS focally attached to alveolar walls away from the main tumor. CONCLUSION: Our 3-D reconstructions demonstrated STAS tumor cells can attach to alveolar walls rather than appearing free floating as seen on 2D sections. This suggests that tumor cells detach from the main tumor, migrate through air spaces and reattach to alveolar walls through vessel co-option allowing them to survive and grow. This may explain the higher recurrence rate and worse survival for STAS positive tumors undergoing limited resection compared to lobectomy

    Validation of mitotic cell quantification via microscopy and multiple whole-slide scanners

    Get PDF
    Background: The establishment of whole-slide imaging (WSI) as a medical diagnostic device allows that pathologists may evaluate mitotic activity with this new technology. Furthermore, the image digitalization provides an opportunity to develop algorithms for automatic quantifications, ideally leading to improved reproducibility as compared to the naked eye examination by pathologists. In order to implement them effectively, accuracy of mitotic figure detection using WSI should be investigated. In this study, we aimed to measure pathologist performance in detecting mitotic figures (MFs) using multiple platforms (multiple scanners) and compare the results with those obtained using a brightfield microscope. Methods: Four slides of canine oral melanoma were prepared and digitized using 4 WSI scanners. In these slides, 40 regions of interest (ROIs) were demarcated, and five observers identified the MFs using different viewing modes: microscopy and WSI. We evaluated the inter- and intra-observer agreements between modes with Cohen’s Kappa and determined “true” MFs with a consensus panel. We then assessed the accuracy (agreement with truth) using the average of sensitivity and specificity. Results: In the 40 ROIs, 155 candidate MFs were detected by five pathologists; 74 of them were determined to be true MFs. Inter- and intra-observer agreement was mostly “substantial” or greater (Kappa?=?0.594?0.939). Accuracy was between 0.632 and 0.843 across all readers and modes. After averaging over readers for each modality, we found that mitosis detection accuracy for 3 of the 4 WSI scanners was significantly less than that of the microscope (p =?0.002, 0.012, and 0.001). Conclusions: This study is the first to compare WSIs and microscopy in detecting MFs at the level of individual cells. Our results suggest that WSI can be used for mitotic cell detection and offers similar reproducibility to the microscope, with slightly less accuracy

    Chemical profile of launaea nudicaulis ethanolic extract and its antidiabetic effect in streptozotocin-induced rats

    No full text
    Launaea nudicaulis is used in folk medicine worldwide to treat several diseases. The present study aimed to assess the antidiabetic activity of L. nudicaulis ethanolic extract and its effect on diabetic complications in streptozotocin-induced hyperglycemic rats. The extract was orally administrated at 250 and 500 mg/kg/day for 5-weeks and compared to glibenclamide as a reference drug at a dose of 5 mg/kg/day. Administration of the extract exhibited a potential hypoglycemic effect manifested by a significant depletion of serum blood glucose concurrent with a significant elevation in serum insulin secretion. After 5-weeks, extract at 250 and 500 mg/kg/day decreased blood glucose levels by about 53.8 and 68.1%, respectively, compared to the initial values (p _ 0.05). The extract at the two dosages prevented weight loss of rats from the 2nd week till the end of the experiment, compared to diabetic control rats. The extract further exhibited marked improvement in diabetic complications including liver, kidney and testis performance, oxidative stress, and relative weight of vital organs, with respect to diabetic control. Histopathological examinations confirmed the previous biochemical analysis, where the extract showed a protective effect on the pancreas, liver, kidney, and testis that degenerated in diabetic control rats. To characterize extract composition, UPLC-ESI-qTOF-MS identified 85 chromatographic peaks belonging to flavonoids, phenolics, acyl glycerols, nitrogenous compounds, and fatty acids, with four novel phenolics reported. The potential anti-diabetic effect warrants its inclusion in further studies and or isolation of the main bioactive agent(s)

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore