6 research outputs found

    PHYTOPHENOLICS COMPOSITION, HYPOLIPIDEMIC, HYPOGLYCEMIC AND ANTIOXIDATIVE EFFECTS OF THE LEAVES OF FORTUNELLA JAPONICA (THUNB.) SWINGLE

    Get PDF
    Objective: Fortunella japonica (Thunb.) Swingle is an evergreen shrub, its whole fruit, including the peel, is eaten. There have been few detailed phytophenolics composition reports on this genus and the hypoglycemic and hypolipidemic effects of the plant were not evaluated. Methods: Structures of the isolated compounds were elucidated by spectral analysis. Serum glucose level, activities of liver enzymes, total protein content, serum lipid profiles, antioxidant parameters and some glycolytic and gluconeogenic enzymes in streptozotocin (STZ)-induced diabetic rats were determined. The evaluation also carried out through determination of liver disorder biomarkers and histopathological examination of liver, kidney and pancreas. Results: Six phytophenolics were isolated, for the first time from the genus Fortunella as well as a sterol compound. Treatment with the ethanolic extract of F. japonica leaves effectively meliorated antioxidant markers and glycolytic enzymes. The histopathological analyzes also confirmed the experimental findings.Conclusion: The results show that the ethanolic extract has hypoglycemic, hypotriglyceridemic and antioxidant effects in STZ-induced diabetic rats, suggesting that this extract supplementation can be useful in preventing diabetic complications associated with hyperlipidemia and oxidative stress.Â

    Design, Synthesis, Anticancer Evaluation and Docking Studies of Novel Heterocyclic Derivatives Obtained via Reactions Involving Curcumin

    No full text
    Curcumin, a widely utilized flavor and coloring agent in food, has been shown to demonstrate powerful antioxidant, antitumor promoting and anti-inflammatory properties in vitro and in vivo. In the present work, synthesis of new heterocyclic derivatives based on Curcumin was studied. Compound 3 was synthesized via the reaction of furochromone carbaldehyde (1) with Curcumin (2) using pipredine as catalyst. Also, novel, 4,9-dimethoxy-5H-furo [3, 2-g] chromen-5-one derivatives 4a–d, 6a–d, 7, 8a–d, 9 and 10 were synthesized by the reactions of furochromone carbaldehyde (1) with different reagents (namely: appropriate amine 3a–d, appropriate hydrazine 5a–d, hydroxylamine hydrochloride, urea/thiourea, malononitrile, malononitrile with hydrazine hydrate). The structure of the synthesized products had been confirmed from their spectroscopic data (IR, 1H-NMR, 13C-NMR and mass spectra). In the present investigation, the newly synthesized products were screened using the MTT colorimetric assay for their in vitro inhibition capacity in two human cancer cell lines (hepatocellular carcinoma (HEPG2) and breast cancer (MCF-7) as well as the normal cell line (human normal melanocyte, HFB4) in comparison to the known anticancer drugs: 5-flurouracil and doxorubicin. The anticancer activity results indicated that the synthesized products 4c and 8b showed growth inhibition activity against HEPG2 cell line and synthesized products 4b and 8a showed growth inhibition activity against MCF-7, but with varying intensities in comparison to the known anticancer drugs, 5-flurouracil and doxorubicin. Cyclin dependent kinase 2 (CDK2), a major cell cycle protein, was identified as a potential molecular target of Curcumin. Furthermore, Curcumin induced G1 cell cycle arrest, which is regulated by CDK2 in cancer cells. Therefore, we used molecular modelling to study in silico the possible inhibitory effect of CDK2 by Curcumin derivatives as a possible mechanism of these compounds as anticancer agents. The molecular docking study revealed that compounds 4b, 8a and 8b were the most effective compounds in inhibiting CDk2, and, this result was in agreement with cytotoxicity assay

    Saponin-adjuvanted vaccine protects chickens against velogenic Newcastle disease virus

    No full text
    Despite extensive vaccination campaigns, Newcastle disease virus (NDV) remains endemic in many countries worldwide, and factors that contribute to this failure include mismatched vaccines, partial immunization, and poor husbandry practices. In order to overcome the problem of genetic divergence between circulating field strains and vaccine strains, we saponin-adjuvanted an Egyptian field strain and assessed its safety and immunogenicity in chickens. Immunization of chickens with the vaccine followed by challenge with a velogenic reference strain revealed the potential of the saponin-adjuvanted vaccine to induce a strong immune response that resulted in complete protection of chickens. Importantly, in vaccinated chickens, virus shedding was abolished, providing an added advantage over the currently available commercial live-attenuated and inactivated vaccines, which are unable to prevent shedding. A histopathological investigation demonstrated that the vaccinated chickens had less-severe lesions than challenged unvaccinated and mock-vaccinated chickens. We propose using this formulation as an alternative and improved NDV vaccine platform that can be exploited to control disease not only in Egypt but also in other disease-endemic countries

    Pioneer Use of Antimalarial Transdermal Combination Therapy in Rodent Malaria Model

    Get PDF
    We have previously reported 1,2,6,7-tetraoxaspiro [7.11]nonadecane (N-89) as a promising antimalarial compound. In this study, we evaluated the effect of transdermal therapy (tdt) of N-89 in combination (tdct) with other antimalarials as an application for children. We prepared ointment formulas containing N-89 plus another antimalarial drug, specifically, mefloquine, pyrimethamine, or chloroquine. In a 4-day suppressive test, the ED50 values for N-89 alone or combined with either mefloquine, pyrimethamine, or chloroquine were 18, 3, 0.1, and 3 mg/kg, respectively. Interaction assays revealed that N-89 combination therapy showed a synergistic effect with mefloquine and pyrimethamine, but chloroquine provoked an antagonistic effect. Antimalarial activity and cure effect were compared for single-drug application and combination therapy. Low doses of tdct N-89 (35 mg/kg) combined with mefloquine (4 mg/kg) or pyrimethamine (1 mg/kg) gave an antimalarial effect but not a cure effect. In contrast, with high doses of N-89 (60 mg/kg) combined with mefloquine (8 mg/kg) or pyrimethamine (1 mg/kg), parasites disappeared on day 4 of treatment, and mice were completely cured without any parasite recurrence. Our results indicated that transdermal N-89 with mefloquine and pyrimethamine provides a promising antimalarial form for application to children
    corecore