13 research outputs found

    Small Molecules as Negative Allosteric Modulators of Alpha7 nAChRs

    Get PDF
    Alpha7 Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in essential physiological functions and play a role in disorders such as Alzheimer’s disease. MD-354 (3-chlorophenylguanidine; 21), the first small–molecule negative allosteric modulator (NAM) at alpha7 nAChRs, served as a lead in developing structure–activity relationships for NAMs at a7 nAChRs. MD-354 (21) also binds at 5-HT3 receptors. Analogs of MD-354 with structural features detrimental to 5-HT3 receptor affinity were evaluated in patch-clamp recordings and an aniline N-methyl analog resulted in a more potent and selective NAM than MD-354. A new N-methyl series of compounds was synthesized in which the 3-position was replaced with different substituents considering their electronic, lipophilic, and steric nature. Comparative studies were initiated to investigate whether or not the MD-354 series and the N-methyl series bind in the same manner; 3D models of the extracellular domain of human alpha7 nAChRs were developed, allosteric sites identified, and docking studies conducted

    Elaboration and Design of α7 nAChR Negative Allosteric Modulators

    Get PDF
    α7 Neuronal nicotinic acetylcholine receptors are one of two major classes of receptors responsible for cholinergic neurotransmission in the central nervous system. The existence of α7 neuronal nAChRs in different regions of the nervous system suggests their involvement in certain essential physiological functions as well as in disorders such as Alzheimer’s disease (AD), drug dependence, and depression. This project was aimed toward the discovery and development of small–molecule arylguanidines that modulate α7 nAChR function with improved subtype-selectivity through an allosteric approach. Identifying the required structural features of these small molecules allowed optimization of their negative allosteric modulator (NAM) actions at α7 neuronal nAChRs. MD-354 (3-chlorophenylguanidine) was the first small–molecule NAM at α7 nAChRs; however, it also binds at 5-HT3 receptors. The N-methyl analog of MD-354 appeared to be more selective toward α7 nAChRs than 5-HT3 receptors. Comparative studies using two series of novel compounds based on MD-354 and its N-methyl analog explored the aryl 3-position and investigated whether or not the MD-354 series and the N-methyl series bind in the same manner. Biological potencies of the MD-354 series and the N-methyl series of compounds, obtained from electrophysiological assays with Xenopus laevis oocytes expressing human α7 nAChRs in two-electrode voltage-clamp assays, showed that N-(3-iodophenyl)-N- methylguanidine (28) is the most potent analog at α7 nAChRs. Our comparative study and Hansch analyses indicated different binding modes of the two series. In addition, we investigated: i) the length/size of the aliphatic side chain at the anilinic nitrogen, ii) the effect of alkylating the guanidine nitrogen atoms, and iii) the necessity of the presence of these nitrogen atoms for the inhibitory effects of arylguanidines at α7 nAChRs. In efforts to explain the varied functional activity of these arylguanidines, homology models of the extracellular domain and the transmembrane domain of human α7 nAChRs were developed, allosteric sites identified, and docking studies and hydropathic analysis conducted. The 3D quantitative structure-activity relationships for our compounds were also analyzed using CoMFA. A pharmacophore for arylguanidines as α7 nAChR NAMs was identified. Together, these data should be useful for the subsequent design of novel arylguanidine analogs for their potential treatment of neurological disorders

    Design, synthesis, and structural elucidation of novel NmeNANAS inhibitors for the treatment of meningococcal infection.

    No full text
    Neisseria meningitidis is the primary cause of bacterial meningitis in many parts of the world, with considerable mortality rates among neonates and adults. In Saudi Arabia, serious outbreaks of N. meningitidis affecting several hundreds of pilgrims attending Hajj in Makkah were recorded in the 2000-2001 season. Evidence shows increased rates of bacterial resistance to penicillin and other antimicrobial agents that are used in the treatment of the meningococcal disease. The host's immune system becomes unable to recognize the polysialic acid capsule of the resistant N. meningitidis that mimics the mammalian cell surface. The biosynthetic pathways of sialic acid (i.e., N-acetylneuraminic acid [NANA]) in bacteria, however, are somewhat different from those in mammals. The largest obstacle facing previously identified inhibitors of NANA synthase (NANAS) in N. meningitidis is that these inhibitors feature undesired chemical and pharmacological characteristics. To better comprehend the binding mechanism underlying these inhibitors at the catalytic site of NANAS, we performed molecular modeling studies to uncover essential structural aspects for the ultimate recognition at the catalytic site required for optimal inhibitory activity. Applying two virtual screening candidate molecules and one designed molecule showed promising structural scaffolds. Here, we report ethyl 3-benzoyl-2,7-dimethyl indolizine-1-carboxylate (INLZ) as a novel molecule with high energetic fitness scores at the catalytic site of the NmeNANAS enzyme. INLZ represents a promising scaffold for NmeNANAS enzyme inhibitors, with new prospects for further structural development and activity optimization

    Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis.

    No full text
    BackgroundMultiple sclerosis (MS) is a widespread neurological autoimmune disease that includes episodes of demyelination in the central nervous system (CNS). The accumulated evidence has suggested that aryl hydrocarbon receptor (Ahr), a ligand-activated transcription factor, is a promising treatment target for MS. Thus, the current study aimed to identify a novel Ahr ligand with anti-inflammatory potential in experimental autoimmune encephalomyelitis (EAE).MethodsAn in silico analysis was carried out to predict interactions between Ahr and potential natural ligands. The effects of a predicted interaction were examined in vitro using CD4+ T cells under T helper17 (Th17) cell-polarizing conditions and lipopolysaccharide (LPS)-stimulated macrophages. Silencing Ahr and microRNA (miR)-132 was achieved by electroporation. Myelin oligodendrocyte glycoprotein (MOG)35-55 and the adoptive transfer of encephalitogenic CD4+ T cells were used to induce EAE.ResultsMolecular docking analysis and in vitro data identified gallic acid (GA) as a novel Ahr ligand with potent activation potential. GA induced the expression of Ahr downstream genes, including cytochrome P450 family 1 subfamily A member 1 (Cyp1a1) and the miR-212/132 cluster, and promoted the formation of the Ahr/Ahr nuclear translocator (Arnt) complex. In vivo, GA-treated mice were resistant to EAE and exhibited reduced levels of proinflammatory cytokines and increased levels of transforming growth factor-β (TGF-β). Furthermore, GA reduced infiltration of CD4+CD45+ T cells and monocytes into the CNS. The anti-inflammatory effects of GA were concomitant with miR-132-potentiated cholinergic anti-inflammation and the regulation of the pathogenic potential of astrocytes and microglia. Inducing EAE by adoptive transfer revealed that CD4+ T cells were not entirely responsible for the ameliorative effects of GA.ConclusionOur findings identify GA as a novel Ahr ligand and provide molecular mechanisms elucidating the ameliorative effects of GA on EAE, suggesting that GA is a potential therapeutic agent to control inflammation in autoimmune diseases such as MS

    Synthesis and characterization of pyrrolo[1,2-a]quinoline derivatives for their larvicidal activity against Anopheles arabiensis

    No full text
    Certain tetrahydropyrido[1,2-a]quinolines and pyrroloquinoline homologs have shown various biological activities such as antimicrobials, crop-protectings, diuretics, antioxidants, anticoagulants, and antimalarial activities. Keeping this observation in mind, we envisaged to synthesize and characterize a series of novel ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates (2a-k). Quaternary salts of lepidine such as 1-[2-(substituted phenyl)-2-oxoethyl]-4-methylquinolin-1-ium bromide (1a-f) were obtained by stirring lepidine with different phenacyl bromides in acetone at room temperature separately. These quaternary salts of lepidine (1a-f) were then treated with electron-deficient ethyl propiolate and dimethyl-but-2-yne-dioate separately, in the presence of anhydrous K2CO3 and dimethylformamide (DMF) solvent to obtain ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates, respectively (2a-k). The newly synthesized compounds were assessed by spectroscopic techniques to determine their structures. Based on our previous study on the similar pharmacophore, the synthesized compounds 2a-k were screened for their larvicidal activity against Anopheles arabiensis using a standard World Health Organization larvicidal assay; compounds 2b and 2e at 8.12 and 9.2 μM exhibited the highest larval mortality at 78 and 89%, respectively, when compared with the negative control acetone, and it demonstrated less activity, which was similar to the positive control, temephos. Finally, the test compound 2e at 9.2 μM, resulted in an 89% mortality rate after 48 h of exposure, followed by compound 2b at 8.12 μM with a 78% mortality rate. Compounds 2f, 2d, and 2c showed intermediate toxicity, and the mortality rate was lower than 60% for larvae exposed to any of the remaining test compounds.Fil: Uppar, Vijayakumar. Rani Channamma University; IndiaFil: Chandrashekharappa, Sandeep. National Centre For Biological Sciences; IndiaFil: Venugopala, Katharigatta N.. King Faisal University; Arabia Saudita. Durban University Of Technology; SudáfricaFil: Deb, Pran Kishore. Philadelphia University; JordaniaFil: Kar, Supratik. Jackson State University; Estados UnidosFil: Alwassil, Osama I.. King Saud Bin Abdulaziz University For Health Sciences; Arabia SauditaFil: Gleiser, Raquel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinar de Biología Vegetal (P). Grupo Vinculado Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales; ArgentinaFil: Garcia, Daniel Asmed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Biológica; ArgentinaFil: Odhav, Bharti. Durban University Of Technology; SudáfricaFil: Mohan, Mahendra K.. National Centre For Biological Sciences; IndiaFil: Venugopala, Rashmi. University of KwaZulu-Natal; SudáfricaFil: Padmashali, Basavaraj. Rani Channamma University; Indi

    Molecular modeling studies and anti-TB activity of trisubstituted indolizine analogues; molecular docking and dynamic inputs

    No full text
    <p>A series of trisubstituted indolizine analogues has been designed as a result of a fragment-based approach to target the inhibition of mycobacterial enoyl-acyl carrier protein reductase. Anti-tuberculosis (TB) screening of the characterized compounds by a resazurin microplate assay method revealed that ethyl group at second position of indolizine nucleus exhibited activity against susceptible and multidrug-resistant strains of <i>Mycobacterium tuberculosis</i> at concentration of 5.5 and 11.3 μg/mL, respectively. A molecular docking study was also conducted to evaluate the stability of the active compounds, and compound with ethyl substitution at second position of indolizine nucleus showed the highest free binding energy of Δ<i>G</i> −24.11 (kcal/mol), a low clash score of 3.04, and high lipo score of −13.33. Indolizine analog with ethyl substitution at second position demonstrated Molecular Mechanics/Generalized Born Surface Area (−23.85 kcal/mol). Two molecular dynamics studies were computed (100 ps and 50 ns) to calculate the relationship between the potential and kinetic energies of the active anti-TB compound with time and temperature. The discovery of this lead may have a positive impact on anti-TB drug discovery.</p

    Novel Series of Methyl 3-(Substituted Benzoyl)-7-Substituted-2-Phenylindolizine-1-Carboxylates as Promising Anti-Inflammatory Agents: Molecular Modeling Studies

    No full text
    The cyclooxygenase-2 (COX-2) enzyme is considered to be an important target for developing novel anti-inflammatory agents. Selective COX-2 inhibitors offer the advantage of lower adverse effects that are commonly associated with non-selective COX inhibitors. In this work, a novel series of methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylates was synthesized and evaluated for COX-2 inhibitory activity. Compound 4e was identified as the most active compound of the series with an IC50 of 6.71 &mu;M, which is comparable to the IC50 of indomethacin, a marketed non-steroidal anti-inflammatory drug (NSAID). Molecular modeling and crystallographic studies were conducted to further characterize the compounds and gain better understanding of the binding interactions between the compounds and the residues at the active site of the COX-2 enzyme. The pharmacokinetic properties and potential toxic effects were predicted for all the synthesized compounds, which indicated good drug-like properties. Thus, these synthesized compounds can be considered as potential lead compounds for developing effective anti-inflammatory therapeutic agents

    Development and Pharmacokinetic Evaluation of Novasomes for the Trans-nasal Delivery of Fluvoxamine Using Arachidonic Acid-Carboxymethyl Chitosan Conjugate

    No full text
    Depression is the major mental illness which causes along with loss of interest in daily life, a feeling of hopelessness, appetite or weight changes, anger and irritability. Due to the hepatic first-pass metabolism, the absolute bioavailability of fluvoxamine (FVM) after oral administration is about 50%. By avoiding the pre-systemic metabolism, nasal delivery would boost bioavailability of FVM. Additionally, the absorption is anticipated to occur more quickly than it would via the oral route because of the existence of microvilli and high vasculature. A nonionic surfactant, cholesterol and an arachidonic acid-carboxymethyl chitosan (AA-CMCS) conjugate were used to develop FVM-loaded novasomes. To investigate the effects of surfactant concentration, AA-CMCS conjugate concentration and stirring speed on the novasomes’ characteristics, a Box–Behnken design was used. The dependent variables chosen were zeta potential, polydispersity index and particle size. The AA-CMCS conjugate was confirmed by 1H-NMR and FTIR. Using Design Expert software (version 7; Stat-Ease Inc., Minneapolis, MN, USA), novasomes were further optimized. The chosen optimal formulation (NAC8) was made up of AA-CMCS conjugate, Span 60 and cholesterol. Particle size, zeta potential and PDI values for NAC8 formulation were 101 nm, −35 mV and 0.263, respectively. The NAC8 formulation’s DSC and TGA analysis demonstrated that the medication had been uniformly and amorphously distributed throughout the novasomes. The NAC8 formulation showed 99% and 90% FVM release and permeation, respectively, and the novasome adherence time was 24 h. An improved antidepressant effect along with five-fold increase in bioavailability of FVM was observed after trans-nasal administration of NAC8 formulation compared to the reference commercially available Flumin® tablets. FVM-loaded novasomes administered via the nasal route may therefore constitute an advancement in the management of depression

    Crystallography, in Silico Studies, and In Vitro Antifungal Studies of 2,4,5 Trisubstituted 1,2,3-Triazole Analogues

    No full text
    A series of 2,4,5 trisubstituted-1,2,3-triazole analogues have been screened for their antifungal activity against five fungal strains, Candida parapsilosis, Candida albicans, Candida tropicalis, Aspergillus niger, and Trichophyton rubrum, via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) microdilution assay. Compounds GKV10, GKV11, and GKV15 emerged as promising antifungal agents against all the fungal strains used in the current study. One of the highly active antifungal compounds, GKV10, was selected for a single-crystal X-ray diffraction analysis to unequivocally establish its molecular structure, conformation, and to understand the presence of different intermolecular interactions in its crystal lattice. A cooperative synergy of the C-H&middot;&middot;&middot;O, C-H&middot;&middot;&middot;N, C-H&middot;&middot;&middot;S, C-H&middot;&middot;&middot;&pi;, and &pi;&middot;&middot;&middot;&pi; intermolecular interactions was present in the crystal structure, which contributed towards the overall stabilization of the lattice. A molecular docking study was conducted for all the test compounds against Candida albicans lanosterol-14&alpha;-demethylase (pdb = 5 tzl). The binding stability of the highly promising antifungal test compound, GKV15, from the series was then evaluated by molecular dynamics studies
    corecore