10 research outputs found

    Deep learning control for digital feedback systems: Improved performance with robustness against parameter change

    Get PDF
    Training data for a deep learning (DL) neural network (NN) controller are obtained from the input and output signals of a conventional digital controller that is designed to provide the suitable control signal to a specified plant within a feedback digital control system. It is found that if the DL controller is sufficiently deep (four hidden layers), it can outperform the conventional controller in terms of settling time of the system output transient response to a unit-step reference signal. That is, the DL controller introduces a damping effect. Moreover, it does not need to be retrained to operate with a reference signal of different magnitude, or under system parameter change. Such properties make the DL control more attractive for applications that may undergo parameter variation, such as sensor networks. The promising results of robustness against parameter changes are calling for future research in the direction of robust DL control

    Deep learning for robust adaptive inverse control of nonlinear dynamic systems: Improved settling time with an autoencoder

    Get PDF
    An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system

    Performance Analysis of Dijkstra-Based Weighted Sum Minimization Routing Algorithm for Wireless Mesh Networks

    Get PDF
    Multiobjective optimization methods for routing in static wireless mesh networks (WMNs), with more than one QoS measure to be optimized, are highly challenging. To optimize the performance for a given end-to-end route in a static network, the most common metrics that need to be optimized or bounded are the path capacity and the end-to-end delay. In this work, we focus on combining desirable properties of these two metrics by minimizing a weighted metrics sum via a Dijkstra-based algorithm. The approach is directed towards fast convergence rather than optimality. It is shown that the resulting algorithm provides more satisfactory results than simple Dijkstra-based pruning algorithms in terms of simultaneously achieving high capacity and small delay. The effect of changing the weighting factor on the proposed algorithm performance is investigated

    Image Quality Assessment for Different Wavelet Compression Techniques in a Visual Communication Framework

    Get PDF
    Images with subband coding and threshold wavelet compression are transmitted over a Rayleigh communication channel with additive white Gaussian noise (AWGN), after quantization and 16-QAM modulation. A comparison is made between these two types of compression using both mean square error (MSE) and structural similarity (SSIM) image quality assessment (IQA) criteria applied to the reconstructed image at the receiver. The two methods yielded comparable SSIM but different MSE measures. In this work, we justify our results which support previous findings in the literature that the MSE between two images is not indicative of structural similarity or the visibility of errors. It is found that it is difficult to reduce the pointwise errors in subband-compressed images (higher MSE). However, the compressed images provide comparable SSIM or perceived quality for both types of compression provided that the retained energy after compression is the same

    Compressive Covariance Sensing-Based Power Spectrum Estimation of Real-Valued Signals Subject to Sub-Nyquist Sampling

    No full text
    In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ā„“1-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance

    Frequency estimation from compressed measurements of a sinusoid in movingā€average colored noise

    Get PDF
    Frequency estimation of a single sinusoid in colored noise has received a considerable amount of attention in the research community. Taking into account the recent emergence and advances in compressive covariance sensing (CCS), the aim of this work is to combine the two disci-plines by studying the effects of compressed measurements of a single sinusoid in movingā€average colored noise on its frequency estimation accuracy. CCS techniques can recover the secondā€order statistics of the original uncompressed signal from the compressed measurements, thereby enabling correlationā€based frequency estimation of single tones in colored noise using higher order lags. Ac-ceptable accuracy is achieved for moderate compression ratios and for a sufficiently large number of available compressed signal samples. It is expected that the proposed method would be advan-tageous in applications involving resourceā€limited systems such as wireless sensor networks

    Short word-length entering compressive sensing domain: Improved energy efficiency in wireless sensor networks

    No full text
    This work combines compressive sensing and short word-length techniques to achieve localization and target tracking in wireless sensor networks with energy-efficient communication between the network anchors and the fusion center. Gradient descent localization is performed using time-of-arrival (TOA) data which are indicative of the distance between anchors and the target thereby achieving range-based localization. The short word-length techniques considered are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of the data volume transmitted from anchors to the fusion center by employing any of the two delta modulation variants with compressive sensing techniques. Delta modulation allows the transmission of one bit per TOA sample. The communication energy efficiency is increased by RNJ, R ā‰„ 1, where R is the sample reduction ratio of compressive sensing, and is the number of bits originally present in a TOA-sample word. It is found that the localization system involving sigma-delta modulation has a superior performance to that using delta-modulation or pure compressive sampling alone, in terms of both energy efficiency and localization error in the presence of TOA measurement noise and transmission noise, owing to the noise shaping property of sigma-delta modulation
    corecore