35 research outputs found

    Oštećenja u aluminiju proizvedena zračenjem iz CO2 i Nd:YAG lasera

    Get PDF
    The change in the electrical properties of pure aluminium (Al 99.999%) after exposure to CO2 (energy = 2.5 J/pulse, wavelength = 10.6 µm, pulse duration = 200 nsec) and Nd:YAG (energy = 10 mJ/pulse, wavelength = 1.06 µm and pulse duration = 12 nsec) laser radiation is investigated. The samples were exposed to laser radiations for different numbers of pulses. The change in electrical characteristics of Al is studied under different ambient conditions, after irradiating the samples in air, vacuum and hydrogen at different pressures. After exposure, the electrical conductivity of Al is measured by the four probe method. The electrical conductivity decreases with increasing number of pulses. The damage in air and in hydrogen is more pronounced than in vacuum which can be attributed to collisionnal sputtering of Al by plasma ions of air molecules and hydrogen, respectively. The change in the conductivity in hydrogen is pressure-dependent. Some theoretical considerations are also made, e.g. the phonon speed in Al during the photon interaction, minimal melting and evaporation energy per volume, damage threshold energy, penetration depth, the mass of heated volume and average temperature rise at the Al surface during laser irradiation.Proučavamo promjene električnih svojstava čistog aluminija (Al 99.999%) nakon obasjavanja CO2 (energija = 2.5 J/puls, valna duljina = 10.6 µm, trajanje pulsa = 200 nsec) i Nd:YAG (energija = 10 mJ/puls, valna duljina = 1.06 µm, trajanje pulsa = 12 nsec) laserima. Uzorci su izloženi različitim brojevima pulseva. Proučavali smo promjene električne vodljivosti Al s uzorcima u zraku, vakuumu i u vodiku. Nakon obasjavanja mjerili smo električnu vodljivost metodom četiriju spojišta. Električna se vodljivost smanjuje nakon povećanog broja pulseva. Oštećenja u zraku i vodiku veća su nego u vakuumu, što se pripisuje sudarnom rasprašivanju Al ionima molekula zraka odnosno vodika u plazmi. Promjena vodljivosti uzoraka obasjanih u vodiku ovisna je o tlaku. Razmotrili smo neke teorijske rezultate, npr. fononsku brzinu u Al tijekom obasjavanja, minimalnu energiju taljenja i isparavanja po jedinici volumena, energijski prag oštećenja, dubinu prodiranja, masu zagrijanog volumena i prosječno povećanje temperature površine Al tijekom obasjavanja

    Oštećenja u aluminiju proizvedena zračenjem iz CO2 i Nd:YAG lasera

    Get PDF
    The change in the electrical properties of pure aluminium (Al 99.999%) after exposure to CO2 (energy = 2.5 J/pulse, wavelength = 10.6 µm, pulse duration = 200 nsec) and Nd:YAG (energy = 10 mJ/pulse, wavelength = 1.06 µm and pulse duration = 12 nsec) laser radiation is investigated. The samples were exposed to laser radiations for different numbers of pulses. The change in electrical characteristics of Al is studied under different ambient conditions, after irradiating the samples in air, vacuum and hydrogen at different pressures. After exposure, the electrical conductivity of Al is measured by the four probe method. The electrical conductivity decreases with increasing number of pulses. The damage in air and in hydrogen is more pronounced than in vacuum which can be attributed to collisionnal sputtering of Al by plasma ions of air molecules and hydrogen, respectively. The change in the conductivity in hydrogen is pressure-dependent. Some theoretical considerations are also made, e.g. the phonon speed in Al during the photon interaction, minimal melting and evaporation energy per volume, damage threshold energy, penetration depth, the mass of heated volume and average temperature rise at the Al surface during laser irradiation.Proučavamo promjene električnih svojstava čistog aluminija (Al 99.999%) nakon obasjavanja CO2 (energija = 2.5 J/puls, valna duljina = 10.6 µm, trajanje pulsa = 200 nsec) i Nd:YAG (energija = 10 mJ/puls, valna duljina = 1.06 µm, trajanje pulsa = 12 nsec) laserima. Uzorci su izloženi različitim brojevima pulseva. Proučavali smo promjene električne vodljivosti Al s uzorcima u zraku, vakuumu i u vodiku. Nakon obasjavanja mjerili smo električnu vodljivost metodom četiriju spojišta. Električna se vodljivost smanjuje nakon povećanog broja pulseva. Oštećenja u zraku i vodiku veća su nego u vakuumu, što se pripisuje sudarnom rasprašivanju Al ionima molekula zraka odnosno vodika u plazmi. Promjena vodljivosti uzoraka obasjanih u vodiku ovisna je o tlaku. Razmotrili smo neke teorijske rezultate, npr. fononsku brzinu u Al tijekom obasjavanja, minimalnu energiju taljenja i isparavanja po jedinici volumena, energijski prag oštećenja, dubinu prodiranja, masu zagrijanog volumena i prosječno povećanje temperature površine Al tijekom obasjavanja

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum

    A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species

    Get PDF
    Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies

    The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice

    Get PDF
    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone

    The State of Neuro-Oncology During the COVID-19 Pandemic: A Worldwide Assessment

    Get PDF
    To assess the impact of the pandemic on the field, we performed an international web-based survey of practitioners, scientists, and trainees from 21 neuro-oncology organizations across 6 continents from April 24 through May 17. Of 582 respondents, 258 (45%) were in the US, and 314 (55%) were international. 80.4% were affiliated with academic institutions. 94% respondents reported changes in clinical practice; 95% reported conversion to telemedicine for at least some appointments. However, almost 10% practitioners felt the need to see patients in person specifically because of billing concerns and perceived institutional pressure. Over 50% believed neuro-oncology patients were at increased risk of contracting COVID-19. 67% practitioners suspended enrollment for at least one clinical trial: 53% suspended phase II and 62% suspended phase III trial enrollment. 71% clinicians feared for their or their families’ safety, specifically because of their clinical duties. 20% percent said they did not have enough PPE to work safely; about the same percentage were unhappy with their institutions’ response to the pandemic. 43% believed the pandemic would negatively affect their academic career, and 52% fellowship program directors were worried about losing funding for their training programs. While 69% respondents reported increased stress, 44% were offered no psychosocial support. 37% had their salary reduced. 36% researchers had to temporarily close their laboratories. In contrast, the pandemic created positive changes in perceived patient and family satisfaction, quality of communication, and use of technology to deliver care and interactions with other practitioners. CONCLUSIONS: The pandemic has altered standard treatment schedules and limited investigational treatment options for patients. In some cases, clinicians felt institutional pressure to continue conducting billable in-person visits when telemedicine visits would have sufficed. A lack of institutional support created anxiety among clinicians and researchers. We make specific recommendations to guide clinical and scientific infrastructure moving forward

    Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry

    Get PDF
    Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10 ) and AC058822.1 (P = 1.47 × 10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).
    corecore