22,881 research outputs found

    Characterization of a rare analphoid supernumerary marker chromosome in mosaic

    Get PDF
    Abstract publicado em: Chromosome Research. 2015;23(Suppl 1):67-8. doi:10.1007/s10577-015-9476-6Analphoid supernumerary marker chromosomes (SMCs) are a rare subclass of SMCs C-band-negative and devoid of alpha-satellite DNA. These marker chromosomes cannot be identified unambiguously by conventional banding techniques alone being necessary to apply molecular cytogenetic methods in favour of a detailed characterization. In this work we report an analphoid SMC involving the terminal long arm of chromosome 7, in 9 years-old boy with several dysmorphic features and severe development delay. Cytogenetic analysis revealed a mosaic karyotype with the presence of an extra SMC, de novo, in 20 % of lymphocytes and 73 % of fibroblast cells. FISH analysis with alpha-satellite probes for all chromosomes, whole chromosome painting probe for chromosome 7, and D7S427 and TelVysion 7q probes, allowed establishing the origin of the SMC as an analphoidmarker resulting of an invdup rearrangement of 7q36-qter region. Affimetrix CytoScan HD microarray analysis, redefined the SMC to arr[hg19] 7q35(143696249-159119707)×2~3, which correspond to a gain of 15.42 Mb and encloses 67 OMIM genes, 16 of which are associated to disease. This result, combined with detailed clinical description, will provide an important means for better genotype-phenotype correlation and a more suitable genetic counselling to the patient and his parents, despite the additional difficulty resulting from being a mosaic (expression varies in different tissues). Analphoid SMCs derived from chromosome 7 are very rare, with only three cases reported so far. With this case we hope contribute to a better understanding of this type of chromosome rearrangements which are difficult for genetic counselling

    Cultivares de milho para produção de palha para fins artesanais.

    Get PDF
    bitstream/CNPMS-2010/22857/1/Circular-85.pd

    Cultivares de milho para produção de palha para fins artesanais.

    Get PDF
    bitstream/item/30955/1/Circular-85.pd

    Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems

    Get PDF
    This work deals with the formation of black hole in bidimensional dilaton gravity coupled to scalar matter fields. We investigate two scalar matter systems, one described by a sixth power potential and the other defined with two scalar fields containing up to the fourth power in the fields. The topological solutions that appear in these cases allow the formation of black holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268

    The nature of the dense core population in the Pipe Nebula: A survey of NH3, CCS, and HC5N molecular line emission

    Full text link
    Recent extinction studies of the Pipe Nebula (d=130 pc) reveal many cores spanning a range in mass from 0.2 to 20.4 Msun. These dense cores were identified via their high extinction and comprise a starless population in a very early stage of development. Here we present a survey of NH3 (1,1), NH3 (2,2), CCS (2_1,1_0), and HC5N (9,8) emission toward 46 of these cores. An atlas of the 2MASS extinction maps is also presented. In total, we detect 63% of the cores in NH3 (1,1) 22% in NH3 (2,2), 28% in CCS, and 9% in HC5N emission. We find the cores are associated with dense gas (~10^4 cm-3) with 9.5 < T_k < 17 K. Compared to C18O, we find the NH3 linewidths are systematically narrower, implying that the NH3 is tracing the dense component of the gas and that these cores are relatively quiescent. We find no correlation between core linewidth and size. The derived properties of the Pipe cores are similar to cores within other low-mass star-forming regions: the only differences are that the Pipe cores have weaker NH3 emision and most show no current star formation as evidenced by the lack of embedded infrared sources. Such weak NH3 emission could arise due to low column densities and abundances or reduced excitation due to relatively low core volume densities. Either alternative implies that the cores are relatively young. Thus, the Pipe cores represent an excellent sample of dense cores in which to study the initial conditions for star formation and the earliest stages of core formation and evolution.Comment: 35 pages, 10 figures (excluding the appendix). For the complete appendix contact [email protected]. Accepted for publication in ApJ

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure
    corecore