30 research outputs found

    Recent insights into the role of NF-kappaB in ovarian carcinogenesis

    Get PDF
    The NF-ÎșBs are a family of ubiquitously expressed transcription factors that have been described to be responsible for the establishment of an inflammatory response. Studies in the past decade have also demonstrated this family's role in the initiation and progression of hematological and solid tumors. Recently, research has uncovered a specific role for NF-ÎșBs in the development and maintenance of ovarian cancer

    KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells

    Get PDF
    © 2009 Kim et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Prevalence of Epithelial Ovarian Cancer Stem Cells Correlates with Recurrence in Early-Stage Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer stem cells (EOC stem cells) have been associated with recurrence and chemoresistance. CD44 and CK18 are highly expressed in cancer stem cells and function as tools for their identification and characterization. We investigated the association between the number of CD44+ EOC stem cells in ovarian cancer tumors and progression-free survival. EOC stem cells exist as clusters located close to the stroma forming the cancer stem cell “niche”. 17.1% of the samples reveled high number of CD44+ EOC stem cells (>20% positive cells). In addition, the number of CD44+ EOC stem cells was significantly higher in patients with early-stage ovarian cancer (FIGO I/II), and it was associated with shorter progression-free survival (P = 0.026). This study suggests that quantification of the number of EOC stem cells in the tumor can be used as a predictor of disease and could be applied for treatment selection in early-stage ovarian cancer

    Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism

    Get PDF
    OBJECTIVE: Immature CD11b(+)Gr1(+) myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study\u27s objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells. METHODS: All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti PD1 mAb. The treatment effect was assessed by survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS: Depletion of Gr1(+) immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. These findings, in addition to the adoptive transfer studies, validated the role of immunosuppressive CD11b(+)Gr1(+) myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironment produced both recruitment and regulatory factors for immunosuppressive CD11b(+)Gr1(+) myeloid cells. CD11b(+)Gr1(+) myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted mainly by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found be the most significantly elevated gene in tumor primed myeloid cells. Inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression, and function in myeloid cells. CONCLUSION: Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b(+)Gr1(+) myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in those immunosuppressive myeloid decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer

    Immunological modifications following chemotherapy are associated with delayed recurrence of ovarian cancer

    Get PDF
    IntroductionOvarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy.MethodsPaired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio’s iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples.ResultsThere was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature.DiscussionWe report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival

    Regulatory Role of the Adipose Microenvironment on Ovarian Cancer Progression

    No full text
    The tumor microenvironment of ovarian cancer is the peritoneal cavity wherein adipose tissue is a major component. The role of the adipose tissue in support of ovarian cancer progression has been elucidated in several studies from the past decades. The adipocytes, in particular, are a major source of factors, which regulate all facets of ovarian cancer progression such as acquisition of chemoresistance, enhanced metastatic potential, and metabolic reprogramming. In this review, we summarize the relevant studies, which highlight the role of adipocytes in ovarian cancer progression and offer insights into unanswered questions and possible future directions of research

    Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells

    Get PDF
    Problem The specialized regulatory T-cells (Treg) population, essential for maternal tolerance of the fetus, performs its suppressive actions in the critical peri-implantation phase of pregnancy. In the present work, we investigated whether trophoblast cells are able to induce Treg recruitment, differentiation, and whether these mechanisms are modified by a bacterial or viral infection. Method of Study Human T-regulatory cells were differentiated from naĂŻve CD45RA + CCR7 + cells obtained from peripheral blood mononuclear cells cultured with IL-2 and TGFÎČ over 5days. Induction of iTregs (CD4 +Foxp3 + cells) was evaluated using low serum conditioned media (LSCM), obtained from two first trimester trophoblast cell lines, Swan-71 and HTR8. Coculture experiments were carried out using transwell assays where trophoblast cells were in the absence or presence of PGN, LPS, or Poly [I:C]. Cytokine production was measured by multiplex analysis. Results Trophoblast cells constitutively secrete high levels of TGFÎČ and induced a significant increase of Foxp3 expression accompanied by a specific T-reg cytokine profile. Moreover, trophoblast cells were able to recruit iTregs in a specific manner. Conclusion We demonstrate that trophoblast cells have an active role on the recruitment and differentiation of iTregs, therefore, contributing to the process of immune regulation at the placental-maternal interface. © 2011 John Wiley & Sons A/S.Fil: Ramhorst, Rosanna Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica BiolĂłgica. Laboratorio de InmunofarmacologĂ­a; ArgentinaFil: Fraccaroli, Laura Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica BiolĂłgica. Laboratorio de InmunofarmacologĂ­a; ArgentinaFil: Aldo, Paulomi. University of Yale; Estados UnidosFil: Alvero, Ayesha B.. University of Yale; Estados UnidosFil: Cardenas, Ingrid. University of Yale; Estados UnidosFil: Perez Leiros, Claudia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica BiolĂłgica. Laboratorio de InmunofarmacologĂ­a; ArgentinaFil: Mor, Gil. University of Yale; Estados Unido

    Automated Assay of a Four-Protein Biomarker Panel for Improved Detection of Ovarian Cancer

    No full text
    Background: Mortality from ovarian cancer remains high due to the lack of methods for early detection. The difficulty lies in the low prevalence of the disease necessitating a significantly high specificity and positive-predictive value (PPV) to avoid unneeded and invasive intervention. Currently, cancer antigen- 125 (CA-125) is the most commonly used biomarker for the early detection of ovarian cancer. In this study we determine the value of combining macrophage migration inhibitory factor (MIF), osteopontin (OPN), and prolactin (PROL) with CA-125 in the detection of ovarian cancer serum samples from healthy controls. Materials and Methods: A total of 432 serum samples were included in this study. 153 samples were from ovarian cancer patients and 279 samples were from age-matched healthy controls. The four proteins were quantified using a fully automated, multi-analyte immunoassay. The serum samples were divided into training and testing datasets and analyzed using four classification models to calculate accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results: The four-protein biomarker panel yielded an average accuracy of 91% compared to 85% using CA-125 alone across four classification models (p = 3.224 × 10−9). Further, in our cohort, the four-protein biomarker panel demonstrated a higher sensitivity (median of 76%), specificity (median of 98%), PPV (median of 91.5%), and NPV (median of 92%), compared to CA-125 alone. The performance of the four-protein biomarker remained better than CA-125 alone even in experiments comparing early stage (Stage I and Stage II) ovarian cancer to healthy controls. Conclusions: Combining MIF, OPN, PROL, and CA-125 can better differentiate ovarian cancer from healthy controls compared to CA-125 alone
    corecore