41,422 research outputs found
Observational Constraints on Transverse Gravity: a Generalization of Unimodular Gravity
We explore the hypothesis that the set of symmetries enjoyed by the theory
that describes gravity is not the full group of diffeomorphisms Diff(M), as in
General Relativity, but a maximal subgroup of it, TransverseDiff(M), with its
elements having a jacobian equal to unity; at the infinitesimal level, the
parameter describing the coordinate change, xi^mu (x), is transverse, i.e.,
partial_mu(xi^mu)=0. Incidentally, this is the smaller symmetry one needs to
propagate consistently a graviton, which is a great theoretical motivation for
considering these theories. Also, the determinant of the metric, g, behaves as
a "transverse scalar", so that these theories can be seen as a generalization
of the better-known unimodular gravity. We present our results on the
observational constraints on transverse gravity, in close relation with the
claim of equivalence with general scalar-tensor theory. We also comment on the
structure of the divergences of the quantum theory to the one-loop order.Comment: Prepared for the First Mediterranean Conference on Classical and
Quantum Gravity, MCCQG, Kolymbari (Crete, Greece), 14-18 September, 2009;
also, ERE2009: Gravitation in the Large, Bilbao (Spain), 7-11 September, 200
A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W},
We study the evolution under the renormalization group of the restrictions on
the parameters of the standard model coming from Non-Commutative Geometry,
namely and . We adopt the point of
view that these relations are to be interpreted as {\it tree level} constraints
and, as such, can be implemented in a mass independent renormalization scheme
only at a given energy scale . We show that the physical predictions on
the top and Higgs masses depend weakly on .Comment: 7 pages, FTUAM-94/2, uses harvma
Extraction of silymarin compounds from milk thistle (Silybum marianum) seed using hot, liquid water as the solvent
High-value specialty chemicals are usually obtained from natural products by extracting with generally regarded as safe (GRAS) solvents. Because organic solvents are quite often used, high operating and disposal costs occur. When compared to traditional solvents, water is an interesting alternative because of its low operating and disposal costs. Milk thistle contains compounds (taxifolin, silychristin, silydianin, silybinin A, and silybinin B) that display hepatoxic protection properties. This paper examines the batch extraction of silymarin compounds from milk thistle seed meal in 50°C, 70°C, 85°C and 100°C water as a function of time. For taxifolin, silychristin, silybinin A, and silybinin B, extraction with 100°C water resulted in the highest yields. After 210 min of extraction at 100°C, the yield of taxifolin was 1.2 mg/g of seed while the yields of silychristin, silybinin A, and silybinin B were 5.0, 1.8 and 3.3 mg/g of seed, respectively. The ratios of the extracted compounds, and particularly the ratios at long extraction times, showed that the more polar compounds (taxifolin and silychristin) were preferentially extracted at 85°C, while the less polar silybinin was preferentially extracted at 100°C
Graviton propagator from background-independent quantum gravity
We study the graviton propagator in euclidean loop quantum gravity, using the
spinfoam formalism. We use boundary-amplitude and group-field-theory
techniques, and compute one component of the propagator to first order, under a
number of approximations, obtaining the correct spacetime dependence. In the
large distance limit, the only term of the vertex amplitude that contributes is
the exponential of the Regge action: the other terms, that have raised doubts
on the physical viability of the model, are suppressed by the phase of the
vacuum state, which is determined by the extrinsic geometry of the boundary.Comment: 6 pages. Substantially revised second version. Improved boundary
state ansat
Coexistence of Pairing Tendencies and Ferromagnetism in a Doped Two-Orbital Hubbard Model on Two-Leg Ladders
Using the Density Matrix Renormalization Group and two-leg ladders, we
investigate an electronic two-orbital Hubbard model including plaquette
diagonal hopping amplitudes. Our goal is to search for regimes where charges
added to the undoped state form pairs, presumably a precursor of a
superconducting state.For the electronic density , i.e. the undoped
limit, our investigations show a robust antiferromagnetic ground
state, as in previous investigations. Doping away from and for large
values of the Hund coupling , a ferromagnetic region is found to be stable.
Moreover, when the interorbital on-site Hubbard repulsion is smaller than the
Hund coupling, i.e. for in the standard notation of multiorbital Hubbard
models, our results indicate the coexistence of pairing tendencies and
ferromagnetism close to . These results are compatible with previous
investigations using one dimensional systems. Although further research is
needed to clarify if the range of couplings used here is of relevance for real
materials, such as superconducting heavy fermions or pnictides, our theoretical
results address a possible mechanism for pairing that may be active in the
presence of short-range ferromagnetic fluctuations.Comment: 8 pages, 4 Fig
- …