35 research outputs found

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    Temporal and spatial association between microwaves and type III bursts in the upper corona

    No full text
    One of the most important tasks in solar physics is the study of particles and energy transfer from the lower corona to the outer layers of the solar atmosphere. The most sensitive methods for detecting fluxes of non-thermal electrons in the solar atmosphere is observing their radio emission using modern large radioheliographs. We analyzed joint observations from the 13 April 2019 event observed by LOw-Frequency ARray (LOFAR) at meter wavelengths, and the Siberian Radio Heliograph (SRH) and the Badary Broadband Microwave Spectropolarimeter (BBMS) spectropolarimeter in microwaves performed at the time of the second PSP perihelion. During a period without signatures of non-thermal energy release in X-ray emission, numerous type III and/or type J bursts were observed. During the same two hours we observed soft X-ray brightenings and the appearance of weak microwave emission in an abnormally narrow band around 6 GHz. At these frequencies the increasing flux is well above the noise level, reaching 9 sfu. In the LOFAR dynamic spectrum of 53−80 MHz a region is found that lasts about an hour whose emission is highly correlated with 6 GHz temporal profile. The flux peaks in the meter waves are well correlated with extreme UV (EUV) emission variations caused by repeated surges from the bright X-point. We argue that there is a common source of non-thermal electrons located in the tail of the active region, where two loop systems of very different sizes interacted. The frequencies of type III and/or type J bursts are in accordance with large loop heights around 400 Mm, obtained by the magnetic field reconstruction. The microwave coherent emission was generated in the low loops identified as bright X-ray points seen in soft X-ray and EUV images, produced by electrons with energies several tens of keV at about twice the plasma frequency

    Digital image correlation of coated and uncoated Religa Heart_Ext ventricular assist device

    No full text
    The digital image correlation is used to estimate influence of deposited heamocompatible coatings (gold and titanium nitride) on mechanical response of ventricular assist device Religa Heart_Ext made of Bionate II (thermoplastic polycarbonate urethane) under working conditions by comparison of the coated Religa Heart_Ext with uncoated Religa Heart_Ext. The DIC is applied for experimental investigation of the strains and displacements distribution on external surface of the blood chamber of ventricular assist device during loading. The experiment was conducted in a hydraulic system with water at operating temperatures of 25 and 37 °C, as well as under static pressures: 80, 120, 180, 220 and 280 mmHg, and static underpressures: –25, –45, –75 mmHg. The subsequent images were taken after stabilization of pressure on a set level. The applied research method shows that the nano-coating of 30 nm in thickness significantly affects deformation of the blood chamber of Religa Heart_Ext in macro scale. The proposed composition of coatings increases strain on external surface of the ventricular assist device

    Flow analysis within mechanical heart valve - medtronic hall - and validation of results by numerical modelling

    No full text
    Research was conducted to analyze the flow of a fluid within mechanical heart valve - Medtronic Hall. Physical experiment and numerical modelling were performed. The aim of the research was to determine the difference between obtained experimental and numerical data. In the experiment a dependency between static flow rate within the valve and static inlet and outlet pressure in the valve duct was examined. Moreover a dependency between static flow rate and angular valve position was also determined. Experimental data was used to perform a numerical flow analysis. The obtained flow rate values and angular positions of the valve were set to a finite-volumes-method model in order to achieve model output pressure values identical or similar to the ones obtained from the experiment. The resulting pressure values from the experiment and numerical analyses proved to be of the same order of magnitude, varying only by up to 10%. However, as far as differential pressure is concerned, numerical results were out of the range of measurement resolution. It can be assumed that numerical flow analyses quite correctly predict the real phenomenon and in view of measurement inaccuracy of used sensors authors would suggest using more accurate ones and repeating measurements for future clarification

    Wykorzystanie powłok TiN jako zmodyfikowanych powierzchni kontaktowych w implantowalnej rotacyjnej komorze wspomagania serca ReligaHeart ROT

    No full text
    Constructions of the mechanical-bearingless centrifugal blood pumps utilize different types of non-contact physical bearings, which allows to balance the forces that have an impact on the pump impeller, stabilizing its position in the pump house without wall contact. The paper presents investigations of the hybrid (passive magnetic bearings and hydrodynamic bearings) suspension system for the centrifugal blood pump. Numerical simulations were used to evaluate the hydrodynamic bearing lifting force and magnetic bearing forces interaction. An important aspect of rotor suspension system design was the nominal gap in hydrodynamic bearing area in order to reduce the blood damage risk in this region. The analyses results confirmed that for a small diameter centrifugal pump, the nominal operating hydrodynamic bearing gap could be established within the range from 0.033 to 0.072 mm.Konstrukcje pomp odśrodkowych pozbawionych łożysk mechanicznych wykorzystują różne rodzaje bezkontaktowych łożysk fizycznych, które pozwalają balansować siły oddziałujące na wirnik pompy, stabilizując jego pozycję w obudowie pompy bez kontaktu ze ścianami. Artykuł przedstawia badania hybrydowego (pasywne łożyska magnetyczne i łożyska hydrodynamiczne) systemu zawieszenia wirnika dla odśrodkowej pompy krwi. Symulacji numerycznych użyto dla zbadania siły unoszącej łożyska hydrodynamicznego oraz reakcji łożysk magnetycznych. Ważnym aspektem konstrukcji systemu zawieszenia wirnika było zwiększenie nominalnego prześwitu w obszarze łożyska hydrodynamicznego, aby zredukować ryzyko uszkadzania krwi w tym rejonie. Wyniki analiz potwierdziły możliwość wyznaczenia nominalnego prześwitu w łożysku hydrodynamicznym, dla pomp odśrodkowych małej średnicy, w przedziale od 0,033 do 0,072 mm
    corecore