7 research outputs found

    Use of Radionuclide-Based Imaging Methods in Breast Cancer

    No full text
    Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Current standard diagnostic techniques to assess the hormone receptor status in biopsies include immunohistochemistry and fluorescence in situ hybridization. However, in recent years, there has been an increase in research on noninvasive techniques for molecular imaging of hormone receptors. These methods offer many advantages over conventional imaging, as repeated measurements can be used to capture heterogeneous tumor expression throughout the body, as well as transformations in receptor status during disease progression. Thus, the noninvasive method, as an adjunct to conventional imaging, offers the potential to improve patient selection, optimize dose and schedule, and streamline the assessment of response

    Use of Radionuclide-Based Imaging Methods in Breast Cancer

    No full text
    Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Current standard diagnostic techniques to assess the hormone receptor status in biopsies include immunohistochemistry and fluorescence in situ hybridization. However, in recent years, there has been an increase in research on noninvasive techniques for molecular imaging of hormone receptors. These methods offer many advantages over conventional imaging, as repeated measurements can be used to capture heterogeneous tumor expression throughout the body, as well as transformations in receptor status during disease progression. Thus, the noninvasive method, as an adjunct to conventional imaging, offers the potential to improve patient selection, optimize dose and schedule, and streamline the assessment of response

    99mTc‑labeled single-domain antibody for SPECT/CT assessment of HER2 expression in diverse cancer types

    No full text
    UNLABELLED: The expression status of human epidermal growth factor receptor 2 (HER2) in cancer predicts response to HER2-targeted therapy. Therefore, its accurate determination is of utmost importance. In recent years, there has been an increase in research on noninvasive techniques for molecular imaging, as this method offers the advantages of a more accurate determination of HER2 status without the need for multiple biopsies. The technetium-labeled single-domain antibody RAD201, previously known as 99mTc-NM-02, has been shown to be safe for use in breast cancer imaging with reasonable radiation doses, favorable biodistribution, and imaging characteristics. METHODS: A total of six HER2-positive, heavily pretreated patients with different cancer types aged between 42 and 69 years (5 women and 1 man; the median age of 55.5) have been examined. In six of seven scans, the patients were administered 500 ml of Gelofusine® solution (40 mg/ml) for radiation protection before the tracer injection (434 ± 42 MBq). Planar scans were acquired with the patient supine at 10 min, 60 min, 160 min, 20 h, and 24 h after injection. A CT scan was acquired at 95 min, followed by local tomographic SPECT imaging. RESULTS: One patient was scanned twice with RAD201, 3 months apart, resulting in a total of seven scans for six patients. Here, we show that the use of RAD201 in our patient group shows the same favorable biodistribution as in a previous study with RAD201 (NCT04040686) and that the radiation dose to the critical organ kidney can be reduced by the application of the plasma expander Gelofusine® by almost 50%. CONCLUSION: RAD201 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic (breast) cancer, regardless of ongoing HER2-targeted antibody treatment
    corecore