76 research outputs found

    Extension of the ANSYS® creep and damage simulation capabilities

    Get PDF
    The user programmable features (UPF) of the finite element code ANSYS® are used to generate a customized ANSYS-executable including a more general creep behaviour of materials and a damage module. The numerical approach for the creep behaviour is not restricted to a single creep law (e.g. strain hardening model) with parameters evaluated from a limited stress and temperature range. Instead of this strain rate - strain relations can be read from external creep data files for different temperature and stress levels. The damage module accumulates a damage measure based on the creep strain increment and plastic strain increment of the load step and the current fracture strains for creep and plasticity (depending on temperature and stress level). If the damage measure of an element exceeds a critical value this element is deactivated. Examples are given for illustration and verification of the new program modules

    Fluid-Structure Interaction Investigations for Pipelines

    Get PDF
    The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case

    Finite-Elemente-Modellierung des Risswachstums an 3-Punktbiegeproben

    Get PDF
    Das Verhalten einer 3-Punkt-Biegeprobe mit Anriss unter Belastung kann mittels eines Finite-Element-Modells nachgebildet werden. Das Modell ermöglicht die Berücksichtigung von elastisch-plastischem Materialverhalten entsprechend der jeweiligen materialspezifischen Spannungs-Dehnungs-Kurve, welche mit dem Ansatz der multilinearen kinematischen Verfestigung (MKIN) umgesetzt wird. Weiterhin gestattet das Modell die Einbeziehung der realen Rollenkinematik beim Biegevorgang. Für die Beschreibung des Bruchkriteriums wird ein spezielles Damage-Modell verwendet, mit dem man in der Lage ist, das Risswachstums in geeigneter Weise wiederzugeben. Mit diesem Modell lässt sich auch das Teilentlastungs-Compliance-Verfahren nachbilden. Diese Simulation ermöglicht die Einschätzung von Korrekturansätzen zur experimentellen Risslängenbestimmung über die Compliance-Methode

    Development of an Integral Finite Element Model for the Simulation of Scaled Core-Meltdown-Experiments

    Get PDF
    To get an improved understanding and knowledge of the processes and phenomena during the late phase of a core melt down accident the FOREVER-experiments (Failure of Reactor Vessel Retention) are currently underway. These experiments are simulating the lower head of a reactor pressure vessel under the load of a melt pool with internal heat sources. The geometrical scale of the experiments is 1:10 compared to a common Light Water Reactor. During the first series of experiments the Creep behaviour of the vessel is investigated. Due to the multi-axial creep deformation of the three-dimensional vessel with a non-uniform temperature field these experiments are on the one hand an excellent possibility to validate numerical creep models which are developed on the basis of uniaxial creep tests. On the other hand the results of pre-test calculations can be used for an optimized experimental procedure. Therefore a Finite Element model is developed on the basis of the multi-purpose commercial code ANSYS/Multiphysics®. Using the Computational Fluid Dynamic module the temperature field within the vessel wall is evaluated. The transient structural mechanical calculations are performed applying a creep model which is able to take into account great temperature, stress and strain variations within the model domain. The new numerical approach avoids the use of a single creep law with constants evaluated for a limited stress and temperature range. Instead of this a three-dimensional array is developed where the creep strain rate is evaluated according to the actual total strain, temperature and equivalent stress for each element. Performing post-test calculations for the FOREVER-C2 experiment it was found that the assessment of the experimental data and of the numerical results has to be done very carefully. A slight temperature increase during the creep deformation stage of the experiment for example could explain the creep behaviour which appears to be tertiary because of the accelerating creep strain rate. Taking into account both - experimental and numerical results - gives a good opportunity to improve the simulation and understanding of real accident scenarios

    Beitrag zur Modellierung der Schmelzerückhaltung im RDB nach Verlagerung von Corium in das untere Plenum: Berechnung des Temperaturfeldes und der viskoplastischen Verformung der Behälterwand

    Get PDF
    Bezüglich eines hypothetischen Kernschmelzeszenarios in einem Leichtwasserreak-tor (LWR) ist es notwendig, mögliche Versagensformen des Reaktordruckbehälters sowie Versagenszeiträume zu untersuchen, um die Belastung für das Containment bestimmen zu können. Es wurden bereits eine Reihe von Experimenten durchge-führt, welche Erkenntnisse hierüber liefern sollen. Vom Institut für Sicherheitsforschung des FZR wurde ein Finite-Elemente-Modell er-stellt, das sowohl die Temperaturfeldberechnung für die Wand als auch die elasto-plastische Mechanik der Behälterwand beschreibt. Dabei wurde ein fortgeschrittenes Modell für das Kriechen und für die Materialschädigung entwickelt und an Hand von experimentellen Daten validiert. Die thermischen und mechanischen Berechnungen sind rekursiv und sequentiell gekoppelt. Das Modell ist in der Lage, Versagenszeit und Versagensposition eines Behälters mit beheiztem Schmelzepool zu berechnen. Das Modell wurde für Voraus- und Nachrechnungen der FOREVER-Experimente, die den RDB eines LWR im Maßstab 1:10 nachbilden, angewendet. Diese Experimente wurden an der KTH Stockholm durchgeführt. Die Ergebnisse der Berechnungen sind qualitativ und quantitativ sehr zufriedenstellend. Erste Rechnungen für eine LWR-Geometrie wurden durchgeführt, um Unterschiede und Gemeinsamkeiten zwischen prototypischen Szenarien und skalierten Experi-menten herauszuarbeiten

    SchmelzerĂĽckhaltung im RDB nach Verlagerung von Corium in das untere Plenum Zusammenfassung der bisherigen Ergebnisse des Projekts Nr.: 150 1254

    Get PDF
    Bezüglich eines hypothetischen Kernschmelzeszenarios in einem Leichtwasserreaktor ist es notwendig, mögliche Versagensformen des Reaktordruckbehälters sowie Versagenszeiträume zu untersuchen, um die Belastung für das Containment bestimmen zu können. Es wurden bereits eine Reihe von Experimenten durchgeführt, welche Erkenntnisse hierüber liefern sollen. Begleitend wurden in Einzelversuchen Materialeigenschaften ermittelt, sowie theoretische und numerische Arbeiten durchgeführt. Für die Simulation von Experimenten zum Versagen der Bodenkalotte, wie OLHF oder FOREVER, ist es notwendig, Kriechen und Plastizität zu berücksichtigen. Gleichzeitig müssen geeignete Modelle das Temperaturfeld in der Behälterwand für die mechanischen Rechnungen bereitstellen. Vom Institut für Sicherheitsforschung des FZR wird ein Finite-Elemente-Modell erstellt, das sowohl die Temperaturfeldberechnung für die Wand als auch die elasto-plastische Mechanik der Behälterwand modelliert. Die bisher durchgeführten Arbeiten werden in diesem Bericht kurz erläutert und mit Beispielen belegt. Am FZR wurde ein Finite-Elemente-Model entwickelt, das die Verwendung von einfachen Kriechgesetzen, die mit ihren angepassten Konstanten nur für begrenzte Spannungs- und Temperaturbereiche gültig sind, umgeht. Stattdessen wird eine numerische Kriechdatenbasis angelegt, in der die Kriechdehnrate in Abhängigkeit von der Gesamtdehnung, der Temperatur und der Vergleichsspannung abgelegt ist. Eine wesentliche Aufgabe für diese Vorgehensweise besteht in der Generierung und Validierung der Kriechdatenbasis. Zusätzlich wurden alle relevanten temperaturabhängigen Materialeigenschaften mit entsprechenden Modellen in den Code eingegeben. Für die Bestimmung der Versagenszeit wurde ein Schädigungsmodel nach einem Vorschlag von Lemaitre implementiert. Die Validierung des numerischen Models erfolgt durch die Simulation von und den Vergleich mit Experimenten. Dies geschieht in 3 Stufen: zunächst werden einzelne einachsige Kriechversuche nachgerechnet, was als 1D-Problem bezeichnet wird. In der nächsten Stufe werden sogenannte "Rohrversagensexperimente" simuliert: das RUPTHER-14 und das "MPA-Meppen"-Experiment. Diese Experimnete werden als 2D-Probleme betrachtet. Schließlich kann das Modell auf skalierte 3D-Versuche angewendet werden, in denen die Bodenkalotte eines Druckwasserreaktors mit ihrer halbkugelförmigen Geometrie wiedergegeben wird. Ein Beispiel hierfür sind die FOREVER-Experimente. In Zusammenarbeit mit den Experimentatoren an der KTH in Stockholm wurden Pre- und Posttest-Rechnungen für diese bisher einzigartigen Experimente durchgeführt, deren Ergebnisse qualitativ und quantitativ sehr zufriedenstellend sind. Eine wichtige Frage im Rahmen dieser Arbeit ist die Vergleichbarkeit des französischen Reaktordruckbehälterstahls 16MND5 und des deutschen 20MnMoNi5-5, welche chemisch nahezu identisch sind. Da diese beiden Stähle ein ähnliches Verhalten zeigen, sollte es in gewissem Umfang zulässig sein, experimentelle und numerische Daten und Erkenntnisse zwischen beiden zu übertragen

    Mikrostrukurelle Mechanismen der Strahlenversprödung

    Get PDF
    Gegenstand des Vorhabens im Rahmen der WTZ mit Russland ist die Versprödung des Reaktordruckbehälters infolge der Strahlenbelastung mit schnellen Neutronen im kernnahen Bereich. Um den Einfluss von bestrahlungsinduzierten Gitterdefekten auf die mechanischen Eigenschaften zu ermitteln, wurden analytische Berechnungen zum Einfluss von Hindernissen auf die Beweglichkeit von Versetzungen und damit auf die Ausbildung einer plastischen Zone an der Rissspitze durchgeführt. Es wird demonstriert, dass sich die an der Rissspitze entstehenden Versetzungen an dem Hindernis (bestrahlungsinduzierte Punktdefekte) aufstauen. In Abhängigkeit der Rissbelastung KI und der Entfernung des Hindernisses von der Rissspitze werden die Versetzungsdichte und das durch den Versetzungsstau verursachte Spannungsfeld berechnet. Mit Hilfe von Experimenten zur Neutronenkleinwinkelstreuung (SANS - small angle neutron scattering) an verschiedenen WWER-Stählen und Modelllegierungen wurden Größenverteilungen und die Volumenanteile der strahleninduzierten Defekte für verschiedene Bestrahlungszustände (Fluenzen, Bestrahlungstemperaturen) ermittelt. Es wurde gezeigt, dass sich die strahleninduzierte Werkstoffschädigung durch Wärmebehandlung weitgehend wieder ausheilen lässt. Nach der thermischen Ausheilung ist der Werkstoff bei erneuter Bestrahlung weniger anfällig für strahleninduzierte Defekte. Die Ergebnisse der SANS-Untersuchungen wurden mit der Änderung der mechanischen Eigenschaften (Härte, Streckgrenze und Sprödbruchübergangstemperatur) korreliert. Mit der kinetischen Gitter-Monte-Carlo-Methode wurden numerische Sensitivitätsstudien zum Einfluss des Cu-Gehalts auf die Stabilität von Defekt-Clustern durchgeführt. Die Berechnungen zeigen, dass die Anwesenheit von Cu-Atomen zur Bildung von langlebigen Defekten führt. Dabei werden Leerstellen in Cu/Leerstellen-Cluster eingefangen. Leerstellen in reinem Eisen sind bei Bestrahlungstemperaturen von 270 °C dagegen nicht stabil, die Lebensdauer liegt zwischen 0.01 s und 1 s. Die kritische Cu-Konzentration, ab welcher stabile Defekte entstehen, beträgt ca. 0.1 Masseprozent

    Erwärmung des Reaktordruckbehälters des Blocks 8 des KKW Greifswald bei der Zerlegung mittels Sägetechnik

    Get PDF
    Die Arbeit untersucht das Erwärmungsverhalten des Reaktordruckbehälters des Blockes 8 des KKW Greifswald bei der Zerlegung in Ringabschnitte mit einer Bandsäge. Mit dem Programm ANSYS wurde dazu ein thermisches Finite-Elemente-Modell erstellt. Dieses Modell ist an Hand vorhandener Temperaturmessdaten abgeglichen worden. Mit dem abgeglichenen Modell wurden abschließend die auftretenden Maximaltemperaturen für den Sägevorgang ermittelt. Diese liegen bei höchstens 200 °C

    Investigation of decommissioned reactor pressure vessels of the nuclear power plant Greifswald

    Get PDF
    The investigation of reactor pressure vessel (RPV) material from the decommissioned Greifswald nuclear power plant representing the first generation of Russian-type WWER-440/V-230 reactors offers the opportunity to evaluate the real toughness response. The Greifswald RPVs of 4 units represent different material conditions as follows: • Irradiated (Unit 4), • irradiated and recovery annealed (Units 2 and 3), and • irradiated, recovery annealed and re-irradiated (Unit1). The recovery annealing of the RPV was performed at a temperature of 475° for about 152 hours and included a region covering ±0.70 m above and below the core beltline welding seam. Material samples of a diameter of 119 mm called trepans were extracted from the RPV walls. The research program is focused on the characterisation of the RPV steels (base and weld metal) across the thickness of the RPV wall. This report presents test results measured on the trepans from the beltline welding seam No. SN0.1.4. and forged base metal ring No. 0.3.1. of the Units 1 2 and 4 RPVs. The key part of the testing is focussed on the determination of the reference temperature T0 of the Master Curve (MC) approach following the ASTM standard E1921 to determine the facture toughness, and how it degrades under neutron irradiation and is recovered by thermal annealing. Other than that the mentioned test results include Charpy-V and tensile test results. Following results have been determined: • The mitigation of the neutron embrittlement of the weld and base metal by recovery annealing could be confirmed. • KJc values of the weld metals generally followed the course of the MC though with a large scatter. • There was a large variation in the T0 values evaluated across the thickness of the multilayered welding seams. • The T0 measured on T-S oriented SE(B) specimens from different thickness locations of the welding seams strongly depended on the intrinsic structure along the crack front. • The reference temperature RT0 determined according to the “Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs - VERLIFE” and the fracture toughness lower bound curve based thereon are applicable on the investigated weld metals. • A strong scatter of the fracture toughness KJc values of the recovery annealed and re-irradiated and the irradiated base metal of Unit 1 and 4, respectively is observed with clearly more than 2% of the values below the MC for 2% fracture probability. The application of the multimodal MC-based approach was more suitable and described the temperature dependence of the KJc values in a satisfactory manner. • It was demonstrated that T0 evaluated according to the SINTAP MC extension represented the brittle fraction of the data sets and is therefore suitable for the nonhomogeneous base metal. • The efficiency of the large-scale thermal annealing of the Greifswald WWER 440/V230 Unit 1 and 2 RPVs could be confirmed

    Analytische Modellierung mechanischer Schwingungen von Primärkreiskomponenten des Druckwasserreaktors WWER-440 mit finiten Elementen

    Get PDF
    The project contributes to the improved evaluation of the mechanical integrity of the soviet-type VVER-440 reactors especially, to a sensitive early failure detection and to the localization of mechanical damages of reactor components by means of vibration monitoring. For that purpose the mechanical vibration of all primary circuit components was modelled by finite elements. Modeling was built on the finite element code ANSYS. The interaction between the coolant flowing in the downcomer and the vibrating components has been considered by a fluid-structure element, which describes additional mode selective damping and intertia due to the coolant displacement when the downcomer geometry changes. The calculation model was adjusted using results from experimental vibration investigations. To some extent data from earlier measurements were available. But additionally dedicated experiments had to be performed at original VVERs. Now, the model can be regarded to be widely verified. Mainly it was applied to clarify how hypothetical damages of reactor internals influence the vibration signature of the primary circuit. Such kind of damage simulation is an appropriate means to find sensitive measuring positiones for on-line monitoring and to define physically based threshold values. In principle, the model is even suited to estimate the loads of reactor components which might be imposed by external events (explosion, earthquake)
    • …
    corecore