4,018 research outputs found

    Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations

    Full text link
    Quantum coherence of electrons in ferromagnetic metals is difficult to assess experimentally. We report the first measurements of time-dependent universal conductance fluctuations in ferromagnetic metal (Ni0.8_{0.8}Fe0.2_{0.2}) nanostructures as a function of temperature and magnetic field strength and orientation. We find that the cooperon contribution to this quantum correction is suppressed, and that domain wall motion can be a source of coherence-enhanced conductance fluctuations. The fluctuations are more strongly temperature dependent than those in normal metals, hinting that an unusual dephasing mechanism may be at work.Comment: 5 pages, 4 figure

    Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature

    Full text link
    We show theoretically and experimentally that the conductance of small disordered samples exhibits random oscillations as a function of temperature. The amplitude of the oscillations decays as a power law of temperature, and their characteristic period is of the order of the temperature itself

    Electron-electron interaction corrections to the thermal conductivity in disordered conductors

    Full text link
    We evaluate the electron-electron interaction corrections to the electronic thermal conductivity in a disordered conductor in the diffusive regime. We use a diagrammatic many-body method analogous to that of Altshuler and Aronov for the electrical conductivity. We derive results in one, two and three dimensions for both the singlet and triplet channels, and in all cases find that the Wiedemann-Franz law is violated.Comment: 8 pages, 2 figures Typos corrected in formulas (15) and (A.4) and Table 1; discussion of previous work in introduction extended; reference clarifying different definitions of parameter F adde

    RANDOM MATRIX THEORY APPROACH TO THE INTENSITY DISTRIBUTIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM

    Full text link
    Statistical properties of coherent radiation propagating in a quasi - 1D random media is studied in the framework of random matrix theory. Distribution functions for the total transmission coefficient and the angular transmission coefficient are obtained.Comment: 8 pages, latex, no figures. Submitted to Phys.Rev.

    Coulomb Blockade of Tunneling between Disordered Conductors

    Full text link
    We determine the zero-bias anomaly of the conductance of tunnel junctions by an approach unifying the conventional Coulomb blockade theory for ultrasmall junctions with the diffusive anomalies in disordered conductors. Both, electron-electron interactions within the electrodes and electron-hole interactions between the electrodes are taken into account nonperturbatively. Explicit results are given for one- and two-dimensional junctions, and the crossover to ultrasmall junctions is discussed.Comment: 4 pages, 1 figure. Final version published in Phys. Rev. Let

    Ensemble Averaged Conductance Fluctuations in Anderson Localized Systems

    Full text link
    We demonstrate the presence of energy dependent fluctuations in the localization length, which depend on the disorder distribution. These fluctuations lead to Ensemble Averaged Conductance Fluctuations (EACF) and are enhanced by large disorder. For the binary distribution the fluctuations are strongly enhanced in comparison to the Gaussian and uniform distributions. These results have important implications on ensemble averaged quantities, such as the transmission through quantum wires, where fluctuations can subsist to very high temperatures. For the non-fluctuating part of the localization length in one dimension we obtained an improved analytical expression valid for all disorder strengths by averaging the probability density.Comment: 4 page

    Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions

    Full text link
    Magneto-fluctuations of the normal resistance R_N have been reproducibly observed in high critical temp erature superconductor (HTS) grain boundary junctions, at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Our findings have significant implications on quasiparticle relaxation and coherent transport in HTS grain boundaries.Comment: Revised version, minor changes. 4 pages, 4 figure

    Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles

    Full text link
    We present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain-wall causes an electron wavefunction phase-shift of 5π\approx 5\pi. The phase-shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain-wall. Dephasing time in Co at 0.03K0.03K is short, τϕps\tau_\phi\sim ps, which we attribute to the strong magnetocrystalline anisotropy.Comment: 5 pages 3 figs colou
    corecore