4,018 research outputs found
Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations
Quantum coherence of electrons in ferromagnetic metals is difficult to assess
experimentally. We report the first measurements of time-dependent universal
conductance fluctuations in ferromagnetic metal (NiFe)
nanostructures as a function of temperature and magnetic field strength and
orientation. We find that the cooperon contribution to this quantum correction
is suppressed, and that domain wall motion can be a source of
coherence-enhanced conductance fluctuations. The fluctuations are more strongly
temperature dependent than those in normal metals, hinting that an unusual
dephasing mechanism may be at work.Comment: 5 pages, 4 figure
Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature
We show theoretically and experimentally that the conductance of small
disordered samples exhibits random oscillations as a function of temperature.
The amplitude of the oscillations decays as a power law of temperature, and
their characteristic period is of the order of the temperature itself
Electron-electron interaction corrections to the thermal conductivity in disordered conductors
We evaluate the electron-electron interaction corrections to the electronic
thermal conductivity in a disordered conductor in the diffusive regime. We use
a diagrammatic many-body method analogous to that of Altshuler and Aronov for
the electrical conductivity. We derive results in one, two and three dimensions
for both the singlet and triplet channels, and in all cases find that the
Wiedemann-Franz law is violated.Comment: 8 pages, 2 figures Typos corrected in formulas (15) and (A.4) and
Table 1; discussion of previous work in introduction extended; reference
clarifying different definitions of parameter F adde
RANDOM MATRIX THEORY APPROACH TO THE INTENSITY DISTRIBUTIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM
Statistical properties of coherent radiation propagating in a quasi - 1D
random media is studied in the framework of random matrix theory. Distribution
functions for the total transmission coefficient and the angular transmission
coefficient are obtained.Comment: 8 pages, latex, no figures. Submitted to Phys.Rev.
Coulomb Blockade of Tunneling between Disordered Conductors
We determine the zero-bias anomaly of the conductance of tunnel junctions by
an approach unifying the conventional Coulomb blockade theory for ultrasmall
junctions with the diffusive anomalies in disordered conductors. Both,
electron-electron interactions within the electrodes and electron-hole
interactions between the electrodes are taken into account nonperturbatively.
Explicit results are given for one- and two-dimensional junctions, and the
crossover to ultrasmall junctions is discussed.Comment: 4 pages, 1 figure. Final version published in Phys. Rev. Let
Ensemble Averaged Conductance Fluctuations in Anderson Localized Systems
We demonstrate the presence of energy dependent fluctuations in the
localization length, which depend on the disorder distribution. These
fluctuations lead to Ensemble Averaged Conductance Fluctuations (EACF) and are
enhanced by large disorder. For the binary distribution the fluctuations are
strongly enhanced in comparison to the Gaussian and uniform distributions.
These results have important implications on ensemble averaged quantities, such
as the transmission through quantum wires, where fluctuations can subsist to
very high temperatures. For the non-fluctuating part of the localization length
in one dimension we obtained an improved analytical expression valid for all
disorder strengths by averaging the probability density.Comment: 4 page
Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions
Magneto-fluctuations of the normal resistance R_N have been reproducibly
observed in high critical temp erature superconductor (HTS) grain boundary
junctions, at low temperatures. We attribute them to mesoscopic transport in
narrow channels across the grain boundary line. The Thouless energy appears to
be the relevant energy scale. Our findings have significant implications on
quasiparticle relaxation and coherent transport in HTS grain boundaries.Comment: Revised version, minor changes. 4 pages, 4 figure
Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles
We present measurements of mesoscopic resistance fluctuations in cobalt
nanoparticles and study how the fluctuations with bias voltage, bias
fingerprints, respond to magnetization reversal processes. Bias fingerprints
rearrange when domains are nucleated or annihilated. The domain-wall causes an
electron wavefunction phase-shift of . The phase-shift is not
caused by the Aharonov-Bohm effect; we explain how it arises from the
mistracking effect, where electron spins lag in orientation with respect to the
moments inside the domain-wall. Dephasing time in Co at is short,
, which we attribute to the strong magnetocrystalline
anisotropy.Comment: 5 pages 3 figs colou
- …
