2,312 research outputs found

    Ground state spin and Coulomb blockade peak motion in chaotic quantum dots

    Full text link
    We investigate experimentally and theoretically the behavior of Coulomb blockade (CB) peaks in a magnetic field that couples principally to the ground-state spin (rather than the orbital moment) of a chaotic quantum dot. In the first part, we discuss numerically observed features in the magnetic field dependence of CB peak and spacings that unambiguously identify changes in spin S of each ground state for successive numbers of electrons on the dot, N. We next evaluate the probability that the ground state of the dot has a particular spin S, as a function of the exchange strength, J, and external magnetic field, B. In the second part, we describe recent experiments on gate-defined GaAs quantum dots in which Coulomb peak motion and spacing are measured as a function of in-plane magnetic field, allowing changes in spin between N and N+1 electron ground states to be inferred.Comment: To appear in Proceedings of the Nobel Symposium 2000 (Physica Scripta

    Mesoscopic Aharonov-Bohm oscillations in metallic rings

    Full text link
    We study the amplitude of mesoscopic Aharonov-Bohm oscillations in quasi-one-dimensional (Q1D) diffusive rings. We consider first the low-temperature limit of a fully coherent sample. The variance of oscillation harmonics is calculated as a function of the length of the leads attaching the ring to reservoirs. We further analyze the regime of relatively high temperatures, when the dephasing due to electron-electron interaction suppresses substantially the oscillations. We show that the dephasing length L_phi^AB governing the damping factor exp(-2pi R /L_phi^AB) of the oscillations is parametrically different from the common dephasing length for the Q1D geometry. This is due to the fact that the dephasing is governed by energy transfers determined by the ring circumference 2pi R, making L_phi^AB R-dependent.Comment: 16 pages, 4 figures, to appear in proceedings of NATO/Euresco Conference "Fundamental Problems of Mesoscopic Physics: Interactions and Decoherence", Granada (Spain), September 200

    Statistical model of dephasing in mesoscopic devices introduced in the scattering matrix formalism

    Full text link
    We propose a phenomenological model of dephasing in mesoscopic transport, based on the introduction of random phase fluctuations in the computation of the scattering matrix of the system. A Monte Carlo averaging procedure allows us to extract electrical and microscopic device properties. We show that, in this picture, scattering matrix properties enforced by current conservation and time reversal invariance still hold. In order to assess the validity of the proposed approach, we present simulations of conductance and magnetoconductance of Aharonov-Bohm rings that reproduce the behavior observed in experiments, in particular as far as aspects related to decoherence are concerned.Comment: 6 pages, 6 figure

    Non-linear effects and dephasing in disordered electron systems

    Full text link
    The calculation of the dephasing time in electron systems is presented. By means of the Keldysh formalism we discuss in a unifying way both weak localization and interaction effects in disordered systems. This allows us to show how dephasing arises both in the particle-particle channel (weak localization) and in the particle-hole channel (interaction effect). First we discuss dephasing by an external field. Besides reviewing previous work on how an external oscillating field suppresses the weak localization correction, we derive a new expression for the effect of a field on the interaction correction. We find that the latter may be suppressed by a static electric field, in contrast to weak localization. We then consider dephasing due to inelastic scattering. The ambiguities involved in the definition of the dephasing time are clarified by directly comparing the diagrammatic approach with the path-integral approach. We show that different dephasing times appear in the particle-particle and particle-hole channels. Finally we comment on recent experiments.Comment: 28 pages, 6 figures (14ps-files

    Localization of Matter Waves in 2D-Disordered Optical Potentials

    Full text link
    We consider ultracold atoms in 2D-disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the non-interacting regime. We derive the diffusion constant as function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length.Comment: 4 pages, 3 figures, figures changed, references update

    Calculation of dephasing times in closed quantum dots

    Full text link
    Dephasing of one-particle states in closed quantum dots is analyzed within the framework of random matrix theory and Master equation. Combination of this analysis with recent experiments on the magnetoconductance allows for the first time to evaluate the dephasing times of closed quantum dots. These dephasing times turn out to depend on the mean level spacing and to be significantly enhanced as compared with the case of open dots. Moreover, the experimental data available are consistent with the prediction that the dephasing of one-particle states in finite closed systems disappears at low enough energies and temperatures.Comment: 4 pages, 3 figure

    Ergodicity breaking in a model showing many-body localization

    Full text link
    We study the breaking of ergodicity measured in terms of return probability in the evolution of a quantum state of a spin chain. In the non ergodic phase a quantum state evolves in a much smaller fraction of the Hilbert space than would be allowed by the conservation of extensive observables. By the anomalous scaling of the participation ratios with system size we are led to consider the distribution of the wave function coefficients, a standard observable in modern studies of Anderson localization. We finally present a criterion for the identification of the ergodicity breaking (many-body localization) transition based on these distributions which is quite robust and well suited for numerical investigations of a broad class of problems.Comment: 5 pages, 5 figures, final versio

    Variation of the density of states in amorphous GdSi at the metal-insulator transition

    Get PDF
    We performed detailed conductivity and tunneling mesurements on the amorphous, magnetically doped material α\alpha-Gdx_xSi1−x_{1-x} (GdSi), which can be driven through the metal-insulator transition by the application of an external magnetic field. Conductivity increases linearly with field near the transition and slightly slower on the metallic side. The tunneling conductance, proportional to the density of states N(E)N(E), undergoes a gradual change with increasing field, from insulating, showing a soft gap at low bias, with a slightly weaker than parabolic energy dependence, i.e. N(E)∼EcN(E) \sim E^c, c≲2c \lesssim 2, towards metallic behavior, with EdE^d, 0.5<d<10.5 \lt d \lt 1 energy dependence. The density of states at the Fermi level appears to be zero at low fields, as in an insulator, while the sample shows already small, but metal-like conductivity. We suggest a possible explanation to the observed effect.Comment: 6 pages, 6 figure
    • …
    corecore