9 research outputs found

    A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing

    Get PDF
    Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant ∼10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistent to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals

    Biological and biomedical implications of the co-evolution of pathogens and their hosts

    Get PDF
    Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions

    Policies Regarding the Prosecution of Juvenile Murderers: Which System and Who Should Decide?

    No full text
    The fate awaiting the juvenile charged with murder varies considerably from state to state. In some jurisdictions the youth (depending on age) would have to be prosecuted in juvenile court and receive at worst the most severe sanction available in that forum. In other locations the juvenile could have to be tried in adult court or could be sent there by either a judge or a prosecutor, and would be eligible for an adult sentence, including possibly the death penalty. This study examines the country\u27s various policies regarding the prosecution of juvenile murderers, as well as the implications behind both using the juvenile versus the adult court for these prosecutions and extending the transfer power to the prosecutor versus the judge. © 1996 Wiley. All rights reserved

    Creating an Artistic Self: Amateur Quilters and Subjective Careers

    No full text
    corecore