13,364 research outputs found

    Bounds on Spin-Dependent Lorentz Violation From Inverse Compton Observations

    Get PDF
    Some of the best bounds on possible Lorentz violation in the electron sector come from observations of high-energy astrophysical phenomena. Using measurements of TeV inverse Compton radiation from a number of sources, we place the first bounds--at the 10^(-15) level--on seven of the electron d coefficients.Comment: 10 page

    Gauge Invariance and the Pauli-Villars Regulator in Lorentz- and CPT-Violating Electrodynamics

    Full text link
    We examine the nonperturbative structure of the radiatively induced Chern-Simons term in a Lorentz- and CPT-violating modification of QED. Although the coefficient of the induced Chern-Simons term is in general undetermined, the nonperturbative theory appears to generate a definite value. However, the CPT-even radiative corrections in this same formulation of the theory generally break gauge invariance. We show that gauge invariance may yet be preserved through the use of a Pauli-Villars regulator, and, contrary to earlier expectations, this regulator does not necessarily give rise to a vanishing Chern-Simons term. Instead, two possible values of the Chern-Simons coefficient are allowed, one zero and one nonzero. This formulation of the theory therefore allows the coefficient to vanish naturally, in agreement with experimental observations.Comment: 8 page

    Laboratory Bounds on Electron Lorentz Violation

    Get PDF
    Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation. Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz violation coefficients c_(TJ), at the 3 x 10^(-13) to 6 x 10^(-15) levels.Comment: 18 page

    Synchrotron and Inverse Compton Constraints on Lorentz Violations for Electrons

    Get PDF
    We present a method for constraining Lorentz violation in the electron sector, based on observations of the photons emitted by high-energy astrophysical sources. The most important Lorentz-violating operators at the relevant energies are parameterized by a tensor c^{nu mu) with nine independent components. If c is nonvanishing, then there may be either a maximum electron velocity less than the speed of light or a maximum energy for subluminal electrons; both these quantities will generally depend on the direction of an electron's motion. From synchrotron radiation, we may infer a lower bound on the maximum velocity, and from inverse Compton emission, a lower bound on the maximum subluminal energy. With observational data for both these types of emission from multiple celestial sources, we may then place bounds on all nine of the coefficients that make up c. The most stringent bound, on a certain combination of the coefficients, is at the 6 x 10^(-20) level, and bounds on the coefficients individually range from the 7 x 10^(-15) level to the 2 x 10^(-17) level. For most of the coefficients, these are the most precise bounds available, and with newly available data, we can already improve over previous bounds obtained by the same methods.Comment: 28 page

    Lorentz Violation and Synchrotron Radiation

    Full text link
    We consider the radiation emitted by an ultrarelativistic charged particle moving in a magnetic field, in the presence of an additional Lorentz-violating interaction. In contrast with prior work, we treat a form of Lorentz violation that is represented by a renormalizable operator. Neglecting the radiative reaction force, the particle's trajectory can be determined exactly. The resulting orbit is generally noncircular and does not lie in the place perpendicular to the magnetic field. We do not consider any Lorentz violation in the electromagnetic sector, so the radiation from the accelerated charge can be determined by standard means, and the radiation spectrum will exhibit a Lorentz-violating directional dependence. Using data on emission from the Crab nebula, we can set a bound on a particular combination of Lorentz-violating coefficients at the 6×10206\times10^{-20} level.Comment: 14 page

    Back-translation for discovering distant protein homologies

    Get PDF
    Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. To cope with this situation, we propose a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. This allows us to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.Comment: The 9th International Workshop in Algorithms in Bioinformatics (WABI), Philadelphia : \'Etats-Unis d'Am\'erique (2009

    Clustering with shallow trees

    Full text link
    We propose a new method for hierarchical clustering based on the optimisation of a cost function over trees of limited depth, and we derive a message--passing method that allows to solve it efficiently. The method and algorithm can be interpreted as a natural interpolation between two well-known approaches, namely single linkage and the recently presented Affinity Propagation. We analyze with this general scheme three biological/medical structured datasets (human population based on genetic information, proteins based on sequences and verbal autopsies) and show that the interpolation technique provides new insight.Comment: 11 pages, 7 figure

    CPT and Lorentz violation as signatures for Planck-scale physics

    Full text link
    In recent years, the breakdown of spacetime symmetries has been identified as a promising research field in the context of Planck-scale phenomenology. For example, various theoretical approaches to the quantum-gravity problem are known to accommodate minute violations of CPT invariance. This talk covers various topics within this research area. In particular, some mechanisms for spacetime-symmetry breaking as well as the Standard-Model Extension (SME) test framework will be reviewed; the connection between CPT and Lorentz invariance in quantum field theory will be exposed; and various experimental CPT tests with emphasis on matter--antimatter comparisons will be discussed.Comment: 6 page

    Parallel approach to sliding window sums

    Full text link
    Sliding window sums are widely used in bioinformatics applications, including sequence assembly, k-mer generation, hashing and compression. New vector algorithms which utilize the advanced vector extension (AVX) instructions available on modern processors, or the parallel compute units on GPUs and FPGAs, would provide a significant performance boost for the bioinformatics applications. We develop a generic vectorized sliding sum algorithm with speedup for window size w and number of processors P is O(P/w) for a generic sliding sum. For a sum with commutative operator the speedup is improved to O(P/log(w)). When applied to the genomic application of minimizer based k-mer table generation using AVX instructions, we obtain a speedup of over 5X.Comment: 10 pages, 5 figure

    Non-local on-shell field redefinition for the SME

    Get PDF
    This work instigates a study of non-local field mappings within the Lorentz- and CPT-violating Standard-Model Extension (SME). An example of such a mapping is constructed explicitly, and the conditions for the existence of its inverse are investigated. It is demonstrated that the associated field redefinition can remove b-type Lorentz violation from free SME fermions in certain situations. These results are employed to obtain explicit expressions for the corresponding Lorentz-breaking momentum-space eigenspinors and their orthogonality relations.Comment: 12 pages, REVTeX
    corecore