38 research outputs found

    Same traits, different variance : Item-Level Variation Within Personality Measures

    Get PDF
    © 2014 the Author(s). This article has been published under the terms of the Creative Commons Attribution License. Without requesting permission from the Author or SAGE, you may further copy, distribute, transmit, and adapt the article, with the condition that the Author and SAGE Open are in each case credited as the source of the article. The version of record, Jamie S. Churcyard, Karen J. Pine, Shivani Sharma, Ben (C) Fletcher, ' Same Traits, Difference Variance: Item-Level Variation Within Personality Measures', SAGE Open, 2014, is available online via doi: 10.1177/2158244014522634Personality trait questionnaires are regularly used in individual differences research to examine personality scores between participants, although trait researchers tend to place little value on intra-individual variation in item ratings within a measured trait. The few studies that examine variability indices have not considered how they are related to a selection of psychological outcomes, so we recruited 160 participants (age M = 24.16, SD = 9.54) who completed the IPIP-HEXACO personality questionnaire and several outcome measures. Heterogenous within-subject differences in item ratings were found for every trait/facet measured, with measurement error that remained stable across the questionnaire. Within-subject standard deviations, calculated as measures of individual variation in specific item ratings within a trait/facet, were related to outcomes including life satisfaction and depression. This suggests these indices represent valid constructs of variability, and that researchers administering behavior statement trait questionnaires with outcome measures should also apply item-level variability indices.Peer reviewedFinal Published versio

    Repolarization instability and arrhythmia by I-Kr block in single human-induced pluripotent stem cell-derived cardiomyocytes and 2D monolayers

    No full text
    Aims Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have proven valuable for studies in drug discovery and safety, although limitations regarding their structural and electrophysiological characteristics persist. In this study, we investigated the electrophysiological properties of Pluricyte (R) CMs, a commercially available hiPSC-CMs line with a ventricular phenotype, and assessed arrhythmia incidence by I-Kr block at the single-cell and 2D monolayer level.Methods and results Action potentials were measured at different pacing frequencies, using dynamic clamp. Through voltage-clamp experiments, we determined the properties of I-Na, I-Kr, and I-CaL. Intracellular Ca2+ measurements included Ca2+-transients at baseline and during caffeine perfusion. Effects of I-Kr block were assessed in single hiPSC-CMs and 2D monolayers (multi-electrode arrays). Action-potential duration (APD) and its rate dependence in Pluricyte (R) CMs were comparable to those reported for native human CMs. I-Na, I-Kr, and I-CaL revealed amplitudes, kinetics, and voltage dependence of activation/inactivation similar to other hiPSC-CM lines and, to some extent, to native CMs. Near-physiological Ca2+-induced Ca2+ release, response to caffeine and excitation-contraction coupling gain characterized the cellular Ca2+-handling. Dofetilide prolonged the APD and field-potential duration, and induced early afterdepolarizations. Beat-to-beat variability of repolarization duration increased significantly before the first arrhythmic events in single Pluricyte (R) CMs and 2D monolayers, and predicted pending arrhythmias better than action-potential prolongation.Conclusion Taking their ion-current characteristics and Ca2+ handling into account, Pluricyte (R) CMs are suitable for in vitro studies on action potentials and field potentials. Beat-to-beat variability of repolarization duration proved useful to evaluate the dynamics of repolarization instability and demonstrated its significance as proarrhythmic marker in hiPSC-CMs during I-Kr block.Stem cells & developmental biolog

    A measure of interpersonal dominance

    No full text
    corecore